Normalized defining polynomial
\( x^{16} - 4 x^{15} + 9 x^{13} - 12 x^{12} - 28 x^{11} + 11 x^{10} + 213 x^{9} - 181 x^{8} - 214 x^{7} + 541 x^{6} - 26 x^{5} - 547 x^{4} - 96 x^{3} + 68 x^{2} + 10 x - 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-50641820249485101608827=-\,17^{14}\cdot 67^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{1072} a^{14} - \frac{3}{536} a^{13} + \frac{495}{1072} a^{12} + \frac{409}{1072} a^{11} + \frac{271}{1072} a^{10} - \frac{271}{1072} a^{9} - \frac{205}{536} a^{8} - \frac{37}{268} a^{7} + \frac{405}{1072} a^{6} + \frac{97}{268} a^{5} + \frac{69}{268} a^{4} + \frac{149}{536} a^{3} + \frac{309}{1072} a^{2} - \frac{107}{268} a + \frac{91}{1072}$, $\frac{1}{2548901603398336} a^{15} + \frac{58350322357}{2548901603398336} a^{14} - \frac{184820171766339}{2548901603398336} a^{13} + \frac{517536633660063}{1274450801699168} a^{12} - \frac{88219693008567}{1274450801699168} a^{11} + \frac{59916700529771}{1274450801699168} a^{10} - \frac{738240171205695}{2548901603398336} a^{9} + \frac{167111892413471}{1274450801699168} a^{8} - \frac{246675844268231}{2548901603398336} a^{7} + \frac{1187356921889819}{2548901603398336} a^{6} + \frac{24848068171397}{159306350212396} a^{5} + \frac{3766261514363}{1274450801699168} a^{4} - \frac{154520755132189}{2548901603398336} a^{3} - \frac{869989745978293}{2548901603398336} a^{2} - \frac{292979274493401}{2548901603398336} a + \frac{947697218320441}{2548901603398336}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338820.573524 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 56 conjugacy class representatives for t16n1351 are not computed |
| Character table for t16n1351 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 67 | Data not computed | ||||||