Normalized defining polynomial
\( x^{16} - 5 x^{15} - 28 x^{14} + 116 x^{13} + 387 x^{12} - 526 x^{11} - 4189 x^{10} - 5086 x^{9} + 27980 x^{8} + 55181 x^{7} - 75863 x^{6} - 268128 x^{5} + 198769 x^{4} + 930707 x^{3} - 1189053 x^{2} + 92599 x + 138713 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-319384536834647064600389984779=-\,41^{15}\cdot 59^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2} - \frac{3}{10} a + \frac{3}{10}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{2} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{3}{10} a^{2} + \frac{3}{10} a$, $\frac{1}{230} a^{14} + \frac{11}{230} a^{13} + \frac{2}{115} a^{12} + \frac{9}{46} a^{11} - \frac{21}{230} a^{10} - \frac{1}{46} a^{9} + \frac{56}{115} a^{8} + \frac{24}{115} a^{7} + \frac{54}{115} a^{6} + \frac{11}{23} a^{5} - \frac{93}{230} a^{4} + \frac{2}{23} a^{3} + \frac{7}{230} a^{2} + \frac{5}{23} a - \frac{2}{5}$, $\frac{1}{211175624785996029247064219461320790} a^{15} - \frac{3258438903589059384206386872037}{211175624785996029247064219461320790} a^{14} + \frac{3009034556871790494773021848003753}{105587812392998014623532109730660395} a^{13} + \frac{4761218812927174919664319262966786}{105587812392998014623532109730660395} a^{12} - \frac{40069340721634186755168906800493161}{211175624785996029247064219461320790} a^{11} - \frac{5488702368937351356533584709521739}{42235124957199205849412843892264158} a^{10} + \frac{2871748490320876651507393382516416}{21117562478599602924706421946132079} a^{9} - \frac{21213594952032428286625348492961337}{211175624785996029247064219461320790} a^{8} - \frac{13496407270586941058355429585834887}{42235124957199205849412843892264158} a^{7} - \frac{1572753848808004403217616669264409}{5707449318540433222893627553008670} a^{6} + \frac{4637330976584420518469975514600016}{105587812392998014623532109730660395} a^{5} + \frac{7175597403589587766105310720034585}{21117562478599602924706421946132079} a^{4} - \frac{28496120030865537273689785045788257}{105587812392998014623532109730660395} a^{3} - \frac{9277813754174292842339195412779159}{105587812392998014623532109730660395} a^{2} - \frac{59151554629066527650597893987622459}{211175624785996029247064219461320790} a + \frac{31965255504561718476496357907203}{248149970371323183604070763174290}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2893408318.83 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.6.11490502158979.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 59 | Data not computed | ||||||