Normalized defining polynomial
\( x^{16} - 2 x^{15} - 34 x^{14} - 28 x^{13} + 447 x^{12} + 1510 x^{11} - 891 x^{10} - 9164 x^{9} - 20367 x^{8} - 41894 x^{7} + 30286 x^{6} + 243758 x^{5} + 103863 x^{4} - 261716 x^{3} - 172416 x^{2} + 15600 x + 10000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-319384536834647064600389984779=-\,41^{15}\cdot 59^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{3}{10} a^{6} + \frac{1}{10} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{3}{10} a$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{2}{5} a^{5} - \frac{3}{10} a^{4} + \frac{2}{5} a^{3} + \frac{1}{10} a$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{9} - \frac{1}{5} a^{8} - \frac{1}{20} a^{7} - \frac{1}{10} a^{6} - \frac{7}{20} a^{5} + \frac{2}{5} a^{4} - \frac{3}{10} a^{3} - \frac{2}{5} a^{2} - \frac{7}{20} a - \frac{1}{2}$, $\frac{1}{80} a^{14} - \frac{1}{40} a^{13} + \frac{1}{40} a^{12} - \frac{1}{20} a^{11} + \frac{3}{16} a^{10} - \frac{1}{8} a^{9} - \frac{3}{16} a^{8} + \frac{1}{20} a^{7} - \frac{11}{80} a^{6} - \frac{3}{8} a^{5} - \frac{7}{40} a^{4} + \frac{3}{40} a^{3} - \frac{5}{16} a^{2} + \frac{1}{20} a - \frac{1}{4}$, $\frac{1}{23933488777308445851935566842584000} a^{15} + \frac{28085665716188124205657297495537}{5983372194327111462983891710646000} a^{14} + \frac{92634404668050756138370527869083}{11966744388654222925967783421292000} a^{13} - \frac{25867361968166471418766230651491}{2991686097163555731491945855323000} a^{12} + \frac{593435532373984798571049440150447}{23933488777308445851935566842584000} a^{11} + \frac{30865021437685099921005998731901}{149584304858177786574597292766150} a^{10} + \frac{1461690346462916229261290208136709}{23933488777308445851935566842584000} a^{9} + \frac{343972801867139153048140899943593}{11966744388654222925967783421292000} a^{8} - \frac{4372384496330959899527710469178467}{23933488777308445851935566842584000} a^{7} - \frac{1323000660786462756985866532890343}{2991686097163555731491945855323000} a^{6} - \frac{2509883827553793043787409512780257}{11966744388654222925967783421292000} a^{5} - \frac{491751988997422403115748781113471}{11966744388654222925967783421292000} a^{4} - \frac{8095527893091323106834800671411037}{23933488777308445851935566842584000} a^{3} - \frac{1725466679658690182037122873847633}{11966744388654222925967783421292000} a^{2} - \frac{1686618850611111919658057752831579}{5983372194327111462983891710646000} a - \frac{33325308928748503526882312298891}{119667443886542229259677834212920}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2893408318.83 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.6.11490502158979.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 59 | Data not computed | ||||||