Normalized defining polynomial
\( x^{16} - 4 x^{15} + 30 x^{12} - 12 x^{11} + 108 x^{10} - 200 x^{9} - 465 x^{8} + 340 x^{7} + 628 x^{6} - 112 x^{5} - 350 x^{4} - 40 x^{3} + 60 x^{2} + 16 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2490368000000000000000=-\,2^{32}\cdot 5^{15}\cdot 19\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{20} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{4} a^{4} - \frac{1}{5} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5} a + \frac{1}{20}$, $\frac{1}{20} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{3}{20} a^{5} - \frac{1}{5} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{3}{20} a - \frac{2}{5}$, $\frac{1}{20} a^{10} + \frac{1}{4} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{5}$, $\frac{1}{20} a^{11} + \frac{1}{4} a^{7} - \frac{2}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{5} a$, $\frac{1}{20} a^{12} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} + \frac{3}{10} a^{2} - \frac{1}{4}$, $\frac{1}{20} a^{13} - \frac{3}{10} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{3}{10} a^{3} + \frac{1}{5} a^{2} - \frac{1}{20} a + \frac{2}{5}$, $\frac{1}{40} a^{14} - \frac{1}{40} a^{13} - \frac{1}{40} a^{11} - \frac{1}{40} a^{10} - \frac{1}{40} a^{8} + \frac{1}{8} a^{7} - \frac{13}{40} a^{6} + \frac{1}{4} a^{5} + \frac{9}{40} a^{4} + \frac{1}{8} a^{3} + \frac{13}{40} a + \frac{1}{40}$, $\frac{1}{2940200} a^{15} + \frac{73}{9640} a^{14} + \frac{23}{2410} a^{13} + \frac{7}{9640} a^{12} + \frac{12023}{588040} a^{11} - \frac{22821}{1470100} a^{10} - \frac{9591}{588040} a^{9} - \frac{5891}{588040} a^{8} + \frac{225467}{588040} a^{7} + \frac{17033}{73505} a^{6} + \frac{1104223}{2940200} a^{5} + \frac{4041}{588040} a^{4} + \frac{26244}{73505} a^{3} + \frac{56513}{117608} a^{2} - \frac{264249}{588040} a - \frac{18748}{367525}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 124863.087177 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1604 are not computed |
| Character table for t16n1604 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.5120000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.35 | $x^{8} + 6 x^{6} + 4 x^{5} + 10 x^{4} + 4 x^{2} + 12$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.8.16.35 | $x^{8} + 6 x^{6} + 4 x^{5} + 10 x^{4} + 4 x^{2} + 12$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ | |
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |