Properties

Label 16.10.1892088119...8367.2
Degree $16$
Signature $[10, 3]$
Discriminant $-\,23^{3}\cdot 41^{15}$
Root discriminant $58.52$
Ramified primes $23, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1251

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![961, -3627, -3299, 25123, -20887, -28240, 39764, 11842, -21278, -2240, 3470, -16, -133, 49, -15, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 15*x^14 + 49*x^13 - 133*x^12 - 16*x^11 + 3470*x^10 - 2240*x^9 - 21278*x^8 + 11842*x^7 + 39764*x^6 - 28240*x^5 - 20887*x^4 + 25123*x^3 - 3299*x^2 - 3627*x + 961)
 
gp: K = bnfinit(x^16 - 3*x^15 - 15*x^14 + 49*x^13 - 133*x^12 - 16*x^11 + 3470*x^10 - 2240*x^9 - 21278*x^8 + 11842*x^7 + 39764*x^6 - 28240*x^5 - 20887*x^4 + 25123*x^3 - 3299*x^2 - 3627*x + 961, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} - 15 x^{14} + 49 x^{13} - 133 x^{12} - 16 x^{11} + 3470 x^{10} - 2240 x^{9} - 21278 x^{8} + 11842 x^{7} + 39764 x^{6} - 28240 x^{5} - 20887 x^{4} + 25123 x^{3} - 3299 x^{2} - 3627 x + 961 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-18920881198502041761781608367=-\,23^{3}\cdot 41^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} + \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{3}{8} a^{5} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{114321390475396779165818569552} a^{15} - \frac{2090191788582096703633081013}{57160695237698389582909284776} a^{14} - \frac{6459014372801810276621031683}{114321390475396779165818569552} a^{13} + \frac{6887400465088068707949902477}{57160695237698389582909284776} a^{12} + \frac{5631425583512826073497010933}{114321390475396779165818569552} a^{11} - \frac{2316541622668356216314786021}{114321390475396779165818569552} a^{10} - \frac{27386295487313560201272811115}{114321390475396779165818569552} a^{9} - \frac{23276921900078988439919250117}{114321390475396779165818569552} a^{8} + \frac{9066016389669283317410113795}{114321390475396779165818569552} a^{7} + \frac{1344810213562310988236396887}{3687786789528928360187695792} a^{6} - \frac{5201014175466438087565365953}{114321390475396779165818569552} a^{5} - \frac{5319810003516762678561532535}{114321390475396779165818569552} a^{4} - \frac{8634924430552680958949835925}{57160695237698389582909284776} a^{3} - \frac{31676088386873794229783548485}{114321390475396779165818569552} a^{2} + \frac{6622938377722967398026191235}{28580347618849194791454642388} a - \frac{1687715463893013700780942593}{3687786789528928360187695792}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 906975106.119 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1251:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 34 conjugacy class representatives for t16n1251
Character table for t16n1251 is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 8.6.4479348299263.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ R $16$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41Data not computed