Normalized defining polynomial
\( x^{16} - 3 x^{15} + 289 x^{14} - 5715 x^{13} + 198068 x^{12} - 2405520 x^{11} + 20097237 x^{10} + 16350756 x^{9} - 1447386238 x^{8} + 13050043542 x^{7} + 253622592936 x^{6} - 3906739562893 x^{5} + 49584050475435 x^{4} - 337409531350162 x^{3} + 1555861018641102 x^{2} - 3935185278274183 x + 5698054976725061 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9943583883093737930218051237711077235104795837841=29^{14}\cdot 109^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1154.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{953} a^{14} - \frac{206}{953} a^{13} - \frac{31}{953} a^{12} + \frac{129}{953} a^{11} + \frac{56}{953} a^{10} + \frac{30}{953} a^{9} - \frac{99}{953} a^{8} - \frac{243}{953} a^{7} - \frac{180}{953} a^{6} - \frac{268}{953} a^{5} - \frac{382}{953} a^{4} + \frac{13}{953} a^{3} - \frac{3}{953} a^{2} + \frac{222}{953} a - \frac{202}{953}$, $\frac{1}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{15} + \frac{61206517617686890010519426857869431398295476870562436904415340721826688751861955230048791578647887999351877}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{14} - \frac{6687104432352230295377849545038718313903984134161537153160106319052891447324781152276833128270861085617054959}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{13} - \frac{182818020389089701565572801334440838814225674213476064115267213167854543409635834776574886764878595061669387841}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{12} - \frac{106831796140784039386757690073976942996416571715494490713435938225256617110659132812587898268378075281669635997}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{11} + \frac{213470940966127865431083002186243379317444724633408506287312368206645433417560072334888654804675137405849178388}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{10} + \frac{205513937626198055375060511695343961025026239682259844741910101994860557259779027531823015945354775686035173663}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{9} - \frac{20965295336668300868796210175316147495611937839928764849274134081325964034750691556183571685751585481323982370}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{8} + \frac{125635601645058710333432983414153341905386279820000522611895150542028775148818053767913062392696879428890901734}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{7} + \frac{65600829115034619813958210907627908656252209970632556218706070346322658395041748135239298094045227350453085368}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{6} - \frac{51447236950971273044820543103133687828765233199930010208012384112047756911399269060687096230228361702555247305}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{5} - \frac{158254110797558752888803362808266015579906649084377251588947298452249977823068876240146777576687282029348650316}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{4} - \frac{73440041648202426552958006291966388686963383506327100041612292538019731523551838902439061566612561484785511108}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{3} - \frac{208752578960125142479410897075860456967838062599287347401882703467119947635572562593963509402916938641564571171}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a^{2} + \frac{8650318086227178928494928762698398067105069454965406324651866236645649114827881563986495730542977579875088445}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037} a - \frac{280846183937792520142310766020748062113424596194193851274317491308922811169783632335736424450197120413646387518}{569136543253114502043782915206612684140657550457043699997799737354873167154731736394224033373958464128387114037}$
Class group and class number
$C_{2}\times C_{2}\times C_{29636612}$, which has order $118546448$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2856304493.41 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{109}) \), \(\Q(\sqrt{3161}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{29}, \sqrt{109})\), 8.8.997578257579911722961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $109$ | 109.8.7.2 | $x^{8} - 3924$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 109.8.7.2 | $x^{8} - 3924$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |