Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} + 24 x^{13} - 603 x^{12} - 489 x^{11} + 3515 x^{10} + 9152 x^{9} + 13887 x^{8} + 13145 x^{7} + 7913 x^{6} + 30336 x^{5} + 25264 x^{4} - 9440 x^{3} + 26472 x^{2} - 5929 x + 4781 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9934686090879658520416349720249=7^{7}\cdot 47^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{45} a^{10} + \frac{2}{15} a^{9} + \frac{4}{45} a^{8} + \frac{7}{45} a^{7} - \frac{2}{15} a^{6} - \frac{19}{45} a^{4} - \frac{1}{5} a^{3} - \frac{2}{15} a^{2} - \frac{8}{45} a + \frac{4}{45}$, $\frac{1}{45} a^{11} - \frac{2}{45} a^{9} - \frac{2}{45} a^{8} - \frac{1}{15} a^{7} + \frac{2}{15} a^{6} - \frac{4}{45} a^{5} + \frac{2}{5} a^{3} - \frac{17}{45} a^{2} + \frac{22}{45} a - \frac{1}{5}$, $\frac{1}{45} a^{12} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{45} a^{6} - \frac{4}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a - \frac{22}{45}$, $\frac{1}{7155} a^{13} - \frac{13}{2385} a^{12} - \frac{4}{7155} a^{11} - \frac{2}{795} a^{10} + \frac{41}{1431} a^{9} - \frac{46}{795} a^{8} - \frac{160}{1431} a^{7} - \frac{254}{2385} a^{6} + \frac{56}{7155} a^{5} - \frac{568}{7155} a^{4} + \frac{191}{1431} a^{3} - \frac{1769}{7155} a^{2} + \frac{248}{2385} a + \frac{2702}{7155}$, $\frac{1}{135945} a^{14} + \frac{8}{135945} a^{13} - \frac{1201}{135945} a^{12} - \frac{842}{135945} a^{11} + \frac{1108}{135945} a^{10} - \frac{3658}{135945} a^{9} + \frac{146}{27189} a^{8} - \frac{13876}{135945} a^{7} + \frac{18461}{135945} a^{6} + \frac{1307}{15105} a^{5} - \frac{62152}{135945} a^{4} - \frac{21191}{45315} a^{3} + \frac{7754}{135945} a^{2} - \frac{63454}{135945} a - \frac{26918}{135945}$, $\frac{1}{1544173020512113155345} a^{15} - \frac{199629383184651}{57191593352300487235} a^{14} + \frac{5290037690125666}{1544173020512113155345} a^{13} - \frac{889748243325771665}{102944868034140877023} a^{12} + \frac{9951748877481998816}{1544173020512113155345} a^{11} + \frac{174578081270694227}{171574780056901461705} a^{10} - \frac{4840356935710712303}{34314956011380292341} a^{9} - \frac{67034956908955676686}{514724340170704385115} a^{8} + \frac{105455668957919725942}{1544173020512113155345} a^{7} + \frac{195612642871907996453}{1544173020512113155345} a^{6} + \frac{107993222939554104641}{1544173020512113155345} a^{5} + \frac{114630337256430520268}{1544173020512113155345} a^{4} - \frac{71200973909581503286}{1544173020512113155345} a^{3} - \frac{173846541301157598701}{1544173020512113155345} a^{2} - \frac{4132645862719226582}{57191593352300487235} a + \frac{209642541513452826343}{1544173020512113155345}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 321984542.695 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 4.0.726761.1, 8.0.173771730318809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47 | Data not computed | ||||||