Normalized defining polynomial
\( x^{16} - 4 x^{15} + 5 x^{14} + 2645 x^{13} + 46435 x^{12} - 121864 x^{11} - 15460825 x^{10} + 60514795 x^{9} + 1211493195 x^{8} - 9810178344 x^{7} + 9233730823 x^{6} + 175446845335 x^{5} - 859514035076 x^{4} - 92057160074 x^{3} + 13325887212862 x^{2} - 45824508231069 x + 80918703349713 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98884277765511220794553278305197522019930681=41^{13}\cdot 83^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $561.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{12} + \frac{4}{9} a^{11} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} + \frac{4}{9} a^{7} - \frac{2}{9} a^{6} + \frac{4}{9} a^{5} - \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9} a^{2} + \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{15} + \frac{414996956099362478006083128358563993410737613556103063336300842897755251161910305545133254707957522}{8316791596925622565399846643690585513549948854001036934339658541605680403479769635798165608767196229} a^{14} - \frac{1130655234079398591756194687031652267056837155958058049555671783595383406089030077785547591216218827}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{13} + \frac{6043755807259337420441307922587671496963149592293357882543915561150427115379890693148602187224014088}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{12} + \frac{12339901001960765498039978969552482966070343496444615018777839507035189054426833754120286101458292849}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{11} - \frac{7895258395981454942713107095948715634105441768131953468934338437814568550447845529080902391859383755}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{10} + \frac{2646961422127275157502288997866477785020404171886989936793224187993007524046882747774964785160836525}{8316791596925622565399846643690585513549948854001036934339658541605680403479769635798165608767196229} a^{9} - \frac{8843865159841834171268485336284990202746088301647327299260628698887741659420301672946186403320048699}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{8} + \frac{5429833436658740986021358119362133878114019311435633848319236764858485003534478462381950574474712476}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{7} + \frac{79042139982143747021389764421198968063616537742340822344531165824175648497920087351771205450464679}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{6} + \frac{12160052552784860357692296431790071073509216569732701625611349295594456993691802319382447518184121595}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{5} + \frac{2304344491278020231086818902721831523429690374424678196567369606702035793464679595314358504931207040}{8316791596925622565399846643690585513549948854001036934339658541605680403479769635798165608767196229} a^{4} + \frac{1475572707961546302106738014263319810646817149639483675098994547488514319895201438656335272594138843}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{3} - \frac{2865861272496395517853552624326924689496217292602019840806520296238294907153437083975116951142951834}{24950374790776867696199539931071756540649846562003110803018975624817041210439308907394496826301588687} a^{2} - \frac{1927611596376111754824095226176685184957381715294015946191721179544526211572951574728394307175062451}{8316791596925622565399846643690585513549948854001036934339658541605680403479769635798165608767196229} a - \frac{287089964718464534936494759164456624754059466122545002629969860622295113342335120373269331834558697}{924087955213958062822205182632287279283327650444559659371073171289520044831085515088685067640799581}$
Class group and class number
$C_{4}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 185460517881000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-83}) \), 4.0.282449.1, 8.0.5498340776898521.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $83$ | 83.8.6.2 | $x^{8} + 249 x^{4} + 27556$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 83.8.6.2 | $x^{8} + 249 x^{4} + 27556$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |