Normalized defining polynomial
\( x^{16} - 3 x^{15} + 12 x^{14} - 11 x^{13} - 70 x^{12} + 243 x^{11} - 1544 x^{10} + 2471 x^{9} - 4787 x^{8} - 4508 x^{7} + 70900 x^{6} - 163440 x^{5} + 642304 x^{4} - 1005056 x^{3} + 2335744 x^{2} - 1929216 x + 2916352 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9885646137219473682569328129=3^{4}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{32} a^{7} - \frac{1}{8} a^{6} + \frac{7}{32} a^{5} + \frac{7}{32} a^{4} - \frac{7}{32} a^{3} - \frac{1}{16} a^{2}$, $\frac{1}{64} a^{10} + \frac{1}{32} a^{8} - \frac{1}{64} a^{7} - \frac{1}{64} a^{6} + \frac{3}{32} a^{5} + \frac{1}{16} a^{4} + \frac{3}{64} a^{3} - \frac{3}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{64} a^{11} + \frac{1}{64} a^{8} + \frac{1}{64} a^{7} - \frac{1}{32} a^{6} + \frac{3}{32} a^{5} - \frac{11}{64} a^{4} + \frac{3}{8} a^{3} + \frac{3}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{512} a^{12} - \frac{1}{512} a^{11} + \frac{1}{256} a^{10} + \frac{1}{512} a^{9} - \frac{1}{128} a^{8} - \frac{13}{512} a^{7} + \frac{7}{256} a^{6} - \frac{117}{512} a^{5} + \frac{99}{512} a^{4} + \frac{49}{256} a^{3} - \frac{7}{32} a^{2} - \frac{3}{16} a - \frac{1}{2}$, $\frac{1}{2048} a^{13} + \frac{1}{2048} a^{12} + \frac{5}{2048} a^{10} + \frac{7}{1024} a^{9} + \frac{91}{2048} a^{8} + \frac{9}{512} a^{7} - \frac{153}{2048} a^{6} + \frac{425}{2048} a^{5} + \frac{11}{256} a^{4} + \frac{25}{512} a^{3} - \frac{13}{64} a^{2} - \frac{13}{32} a + \frac{1}{4}$, $\frac{1}{16384} a^{14} - \frac{3}{16384} a^{13} - \frac{1}{4096} a^{12} - \frac{27}{16384} a^{11} + \frac{29}{8192} a^{10} - \frac{221}{16384} a^{9} - \frac{61}{2048} a^{8} - \frac{393}{16384} a^{7} - \frac{499}{16384} a^{6} + \frac{157}{4096} a^{5} - \frac{39}{4096} a^{4} - \frac{487}{1024} a^{3} - \frac{91}{256} a^{2} + \frac{11}{64} a + \frac{3}{8}$, $\frac{1}{54037607137642816737378304} a^{15} + \frac{617698300050367146401}{54037607137642816737378304} a^{14} + \frac{218201469347490383043}{3377350446102676046086144} a^{13} - \frac{35365474357879631890763}{54037607137642816737378304} a^{12} - \frac{124769604878387787025321}{27018803568821408368689152} a^{11} + \frac{341472417704455413720683}{54037607137642816737378304} a^{10} - \frac{69765281456459990033823}{13509401784410704184344576} a^{9} + \frac{2616045898466926313508407}{54037607137642816737378304} a^{8} - \frac{3145050367868533730879607}{54037607137642816737378304} a^{7} - \frac{503463046599869172311195}{6754700892205352092172288} a^{6} + \frac{1430949206801200086697637}{13509401784410704184344576} a^{5} - \frac{200305362748514101117725}{1688675223051338023043072} a^{4} + \frac{157094488115271330084213}{422168805762834505760768} a^{3} + \frac{18029183134094901701001}{52771100720354313220096} a^{2} + \frac{18649321579944850677037}{52771100720354313220096} a + \frac{895296424488629957391}{6596387590044289152512}$
Class group and class number
$C_{89}$, which has order $89$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103600962.089 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.2.15987.1, 4.4.389017.1, 4.2.1167051.1, 8.4.99426586671873.1, 8.0.11047398519097.1, 8.4.1362008036601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 73 | Data not computed | ||||||