Normalized defining polynomial
\( x^{16} - 5 x^{15} + 80 x^{14} - 371 x^{13} + 2451 x^{12} - 11500 x^{11} + 42902 x^{10} - 179757 x^{9} + 579189 x^{8} - 1860278 x^{7} + 5475094 x^{6} - 12157062 x^{5} + 27751164 x^{4} - 84988496 x^{3} + 244561025 x^{2} - 279329589 x + 104368793 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98586762102441645314452445352169=37^{12}\cdot 157^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{3}{7} a^{10} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} - \frac{1}{7} a^{5} + \frac{3}{7} a^{4} - \frac{2}{7} a^{2} + \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{13} + \frac{3}{7} a^{11} + \frac{3}{7} a^{10} + \frac{2}{7} a^{9} + \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7}$, $\frac{1}{21} a^{14} + \frac{1}{3} a^{11} - \frac{10}{21} a^{10} + \frac{10}{21} a^{9} + \frac{1}{21} a^{7} - \frac{1}{21} a^{6} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{8}{21} a + \frac{1}{21}$, $\frac{1}{62801052331149539613095291492651053802552583448013782270527} a^{15} - \frac{1321359557145168736750319399472012871886692342775898033047}{62801052331149539613095291492651053802552583448013782270527} a^{14} - \frac{1480868587820854451410115347853328339141687465649621820232}{20933684110383179871031763830883684600850861149337927423509} a^{13} + \frac{411523160059619135422724577254092080025049408790204919921}{8971578904449934230442184498950150543221797635430540324361} a^{12} - \frac{239904447759585162881285729151051507030190339389311009559}{20933684110383179871031763830883684600850861149337927423509} a^{11} - \frac{6386262916151048995849824708105382460429766639395659201755}{20933684110383179871031763830883684600850861149337927423509} a^{10} + \frac{9579455199606002263426597168077926475153862671223696956292}{62801052331149539613095291492651053802552583448013782270527} a^{9} + \frac{8132928265343787619961033475710050223496594940847922048202}{62801052331149539613095291492651053802552583448013782270527} a^{8} + \frac{14508368683378648651982545677222038128489166140831947123}{20933684110383179871031763830883684600850861149337927423509} a^{7} - \frac{25454825828011327411984513244256252032055197173690624354114}{62801052331149539613095291492651053802552583448013782270527} a^{6} - \frac{2584735563101885828000485105183433611058022631438096134349}{20933684110383179871031763830883684600850861149337927423509} a^{5} + \frac{7740461332857178496901161592856865807228792603061768040951}{20933684110383179871031763830883684600850861149337927423509} a^{4} - \frac{4832437273099144339761680738461021537065875750006964107454}{20933684110383179871031763830883684600850861149337927423509} a^{3} - \frac{9555961877846709870515037145720492403649059408738718596798}{62801052331149539613095291492651053802552583448013782270527} a^{2} - \frac{3292880031666316054127621127807905417617420473432899564518}{62801052331149539613095291492651053802552583448013782270527} a - \frac{5652005583900306720066786865304013391202823415793348115623}{62801052331149539613095291492651053802552583448013782270527}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1996725748.59 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 8.0.402819046213.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 157 | Data not computed | ||||||