Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} + 101 x^{12} - 60 x^{11} - 115 x^{10} + 410 x^{9} - 658 x^{8} + 656 x^{7} - 231 x^{6} - 404 x^{5} + 1028 x^{4} - 1172 x^{3} + 996 x^{2} - 504 x + 243 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9770691771209608583153=17^{7}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{6} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{12} + \frac{1}{18} a^{11} + \frac{1}{6} a^{8} + \frac{1}{9} a^{7} - \frac{1}{18} a^{6} - \frac{5}{18} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{6} a$, $\frac{1}{4806} a^{14} - \frac{7}{4806} a^{13} + \frac{197}{4806} a^{12} - \frac{145}{2403} a^{11} - \frac{385}{1602} a^{10} - \frac{137}{1602} a^{9} + \frac{2}{27} a^{8} + \frac{671}{2403} a^{7} + \frac{25}{801} a^{6} + \frac{211}{2403} a^{5} + \frac{730}{2403} a^{4} - \frac{179}{534} a^{3} - \frac{230}{2403} a^{2} + \frac{1}{801} a + \frac{69}{178}$, $\frac{1}{398898} a^{15} + \frac{17}{199449} a^{14} + \frac{79}{44322} a^{13} - \frac{15731}{199449} a^{12} - \frac{2918}{199449} a^{11} - \frac{4757}{66483} a^{10} + \frac{31402}{199449} a^{9} - \frac{23270}{199449} a^{8} - \frac{27331}{398898} a^{7} - \frac{88747}{398898} a^{6} + \frac{13807}{66483} a^{5} - \frac{80212}{199449} a^{4} + \frac{75280}{199449} a^{3} - \frac{59890}{199449} a^{2} - \frac{32939}{132966} a - \frac{3080}{7387}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63008.5593187 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 4.0.37553.1, 8.0.23973872753.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $47$ | 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |