Normalized defining polynomial
\( x^{16} - 4 x^{15} - 55 x^{14} + 292 x^{13} + 1089 x^{12} - 8804 x^{11} - 5925 x^{10} + 139988 x^{9} - 109229 x^{8} - 1258788 x^{7} + 2004779 x^{6} + 6216884 x^{5} - 11557040 x^{4} - 13141776 x^{3} + 22316704 x^{2} + 3217664 x + 4983232 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97316019886955839743696883969849=37^{6}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{1}{4} a^{3} + \frac{3}{10} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{20} a^{4} + \frac{3}{10} a^{3} + \frac{9}{20} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{40} a^{11} - \frac{1}{40} a^{10} - \frac{1}{40} a^{9} + \frac{1}{20} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{3}{40} a^{5} - \frac{3}{40} a^{4} - \frac{7}{40} a^{3} - \frac{9}{20} a^{2} - \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{9} + \frac{1}{20} a^{8} - \frac{1}{10} a^{7} + \frac{7}{40} a^{6} - \frac{1}{5} a^{4} + \frac{17}{40} a^{3} + \frac{3}{20} a^{2} + \frac{1}{10} a + \frac{1}{5}$, $\frac{1}{400} a^{13} + \frac{1}{100} a^{12} + \frac{3}{400} a^{11} - \frac{3}{200} a^{10} - \frac{1}{80} a^{9} + \frac{3}{100} a^{8} - \frac{53}{400} a^{7} + \frac{19}{100} a^{6} - \frac{31}{400} a^{5} - \frac{1}{200} a^{4} + \frac{161}{400} a^{3} - \frac{31}{100} a^{2} + \frac{11}{25} a - \frac{1}{50}$, $\frac{1}{800} a^{14} - \frac{3}{800} a^{12} - \frac{1}{100} a^{11} + \frac{9}{800} a^{10} + \frac{3}{200} a^{9} - \frac{61}{800} a^{8} + \frac{1}{100} a^{7} + \frac{7}{32} a^{6} + \frac{19}{100} a^{5} - \frac{141}{800} a^{4} + \frac{33}{200} a^{3} - \frac{31}{100} a^{2} - \frac{49}{100} a - \frac{4}{25}$, $\frac{1}{3014844846865858439028847026060180800} a^{15} - \frac{13060390386304794775827218606037}{47106950732279038109825734782190325} a^{14} + \frac{1672444299271610713152296416783221}{3014844846865858439028847026060180800} a^{13} - \frac{1503583430052059690635429267414771}{376855605858232304878605878257522600} a^{12} - \frac{25577002113441862447215821086291}{120593793874634337561153881042407232} a^{11} + \frac{39300800346225408199656163608164}{47106950732279038109825734782190325} a^{10} - \frac{56568362244911034338879526349127257}{3014844846865858439028847026060180800} a^{9} + \frac{31597440056048274227825001869425643}{376855605858232304878605878257522600} a^{8} - \frac{110018284850164897315730156253350121}{3014844846865858439028847026060180800} a^{7} + \frac{27331156914760758436119247244880237}{376855605858232304878605878257522600} a^{6} + \frac{340644135756820476130460687892591799}{3014844846865858439028847026060180800} a^{5} - \frac{3389709043252930646058490787649057}{47106950732279038109825734782190325} a^{4} - \frac{696271267561212783374611775471449}{1463516915954300213120799527213680} a^{3} - \frac{93493421068182463082017031561554353}{376855605858232304878605878257522600} a^{2} - \frac{17075716346674758521383441321904912}{47106950732279038109825734782190325} a - \frac{25986572927916708957296922847465349}{94213901464558076219651469564380650}$
Class group and class number
$C_{2}\times C_{24}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 514989963.509 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 4.0.2550077.1, 4.0.62197.1, 8.4.266618600943089.1 x2, 8.0.6502892705929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |