Normalized defining polynomial
\( x^{16} - 4 x^{15} + 55 x^{14} - 88 x^{13} + 920 x^{12} - 4548 x^{11} + 1215 x^{10} - 3768 x^{9} + 134918 x^{8} - 207338 x^{7} + 40086 x^{6} - 1027637 x^{5} + 2452312 x^{4} - 2392475 x^{3} + 10205840 x^{2} - 20847139 x + 28188139 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97283799690045652521048020437489=29^{14}\cdot 83^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{245} a^{11} - \frac{2}{245} a^{10} + \frac{12}{245} a^{9} + \frac{2}{245} a^{8} - \frac{6}{245} a^{7} - \frac{9}{35} a^{6} + \frac{13}{245} a^{5} + \frac{79}{245} a^{4} - \frac{1}{49} a^{3} + \frac{61}{245} a^{2} - \frac{64}{245} a - \frac{11}{35}$, $\frac{1}{245} a^{12} + \frac{8}{245} a^{10} - \frac{9}{245} a^{9} - \frac{2}{245} a^{8} - \frac{1}{49} a^{7} - \frac{113}{245} a^{6} + \frac{3}{7} a^{5} - \frac{92}{245} a^{4} + \frac{86}{245} a^{3} + \frac{58}{245} a^{2} - \frac{6}{49} a + \frac{13}{35}$, $\frac{1}{3185} a^{13} + \frac{6}{3185} a^{12} + \frac{2}{3185} a^{11} + \frac{12}{245} a^{10} + \frac{152}{3185} a^{9} + \frac{76}{3185} a^{8} - \frac{212}{3185} a^{7} + \frac{304}{637} a^{6} + \frac{43}{637} a^{5} - \frac{160}{637} a^{4} + \frac{324}{3185} a^{3} + \frac{582}{3185} a^{2} - \frac{18}{637} a - \frac{171}{455}$, $\frac{1}{131384435} a^{14} + \frac{9211}{131384435} a^{13} - \frac{150844}{131384435} a^{12} + \frac{172239}{131384435} a^{11} - \frac{4075647}{131384435} a^{10} + \frac{6381096}{131384435} a^{9} - \frac{2103289}{131384435} a^{8} - \frac{6441193}{131384435} a^{7} - \frac{62771001}{131384435} a^{6} - \frac{2065682}{10106495} a^{5} - \frac{55792602}{131384435} a^{4} - \frac{59151499}{131384435} a^{3} + \frac{9519546}{26276887} a^{2} + \frac{473042}{10106495} a + \frac{5615829}{18769205}$, $\frac{1}{20448922968869517595199010637405431925} a^{15} + \frac{10431343165933831933651908903}{20448922968869517595199010637405431925} a^{14} + \frac{294157137975962497598384175065091}{20448922968869517595199010637405431925} a^{13} - \frac{37949581159134201800341150342453056}{20448922968869517595199010637405431925} a^{12} + \frac{21102201688434226286134557542105968}{20448922968869517595199010637405431925} a^{11} + \frac{41839450871213596218687104609332273}{20448922968869517595199010637405431925} a^{10} + \frac{19506694668083695949795429997711222}{1572994074528424430399923895185033225} a^{9} - \frac{1305464286031305505447934738782211171}{20448922968869517595199010637405431925} a^{8} - \frac{859232986956127385906758783277110524}{20448922968869517595199010637405431925} a^{7} + \frac{1702630237899713925589769592661926964}{20448922968869517595199010637405431925} a^{6} - \frac{10188972033645724121869538545182624591}{20448922968869517595199010637405431925} a^{5} + \frac{9286746677496090166609405338604430161}{20448922968869517595199010637405431925} a^{4} + \frac{5217558548449692587383983467188480594}{20448922968869517595199010637405431925} a^{3} - \frac{262768263332085473654407933757554341}{2921274709838502513599858662486490275} a^{2} - \frac{6172275119833646476209064886721114974}{20448922968869517595199010637405431925} a + \frac{213740286936683713583349639425923469}{2921274709838502513599858662486490275}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23434432274.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.2.69803.1, 4.0.24389.1, 4.2.2024287.1, 8.0.118834397892701.1 x2, 8.0.4097737858369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 83 | Data not computed | ||||||