Properties

Label 16.0.96909452923...0000.9
Degree $16$
Signature $[0, 8]$
Discriminant $2^{44}\cdot 5^{12}\cdot 41^{12}$
Root discriminant $364.46$
Ramified primes $2, 5, 41$
Class number $473600000$ (GRH)
Class group $[4, 20, 20, 40, 7400]$ (GRH)
Galois group $C_4^2$ (as 16T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![35571468816, 0, -24932542464, 0, 6889679824, 0, -768301248, 0, 17935164, 0, 1621984, 0, 32916, 0, 288, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 288*x^14 + 32916*x^12 + 1621984*x^10 + 17935164*x^8 - 768301248*x^6 + 6889679824*x^4 - 24932542464*x^2 + 35571468816)
 
gp: K = bnfinit(x^16 + 288*x^14 + 32916*x^12 + 1621984*x^10 + 17935164*x^8 - 768301248*x^6 + 6889679824*x^4 - 24932542464*x^2 + 35571468816, 1)
 

Normalized defining polynomial

\( x^{16} + 288 x^{14} + 32916 x^{12} + 1621984 x^{10} + 17935164 x^{8} - 768301248 x^{6} + 6889679824 x^{4} - 24932542464 x^{2} + 35571468816 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(96909452923685986042145406976000000000000=2^{44}\cdot 5^{12}\cdot 41^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $364.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3280=2^{4}\cdot 5\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{3280}(1,·)$, $\chi_{3280}(2059,·)$, $\chi_{3280}(2049,·)$, $\chi_{3280}(2633,·)$, $\chi_{3280}(1803,·)$, $\chi_{3280}(337,·)$, $\chi_{3280}(83,·)$, $\chi_{3280}(1731,·)$, $\chi_{3280}(329,·)$, $\chi_{3280}(2787,·)$, $\chi_{3280}(1713,·)$, $\chi_{3280}(811,·)$, $\chi_{3280}(1067,·)$, $\chi_{3280}(1139,·)$, $\chi_{3280}(2697,·)$, $\chi_{3280}(1721,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{5} + \frac{1}{3} a$, $\frac{1}{54} a^{6} + \frac{1}{54} a^{4} - \frac{10}{27} a^{2} + \frac{1}{3}$, $\frac{1}{54} a^{7} + \frac{1}{54} a^{5} - \frac{1}{27} a^{3}$, $\frac{1}{432} a^{8} - \frac{1}{108} a^{6} - \frac{17}{216} a^{4} - \frac{1}{54} a^{2} + \frac{5}{12}$, $\frac{1}{40176} a^{9} - \frac{11}{3348} a^{7} - \frac{73}{2232} a^{5} + \frac{679}{5022} a^{3} + \frac{157}{1116} a$, $\frac{1}{40176} a^{10} - \frac{13}{13392} a^{8} - \frac{11}{2232} a^{6} - \frac{1469}{20088} a^{4} + \frac{161}{3348} a^{2} + \frac{1}{12}$, $\frac{1}{40176} a^{11} - \frac{23}{6696} a^{7} - \frac{263}{5022} a^{5} + \frac{23}{372} a^{3} - \frac{3}{31} a$, $\frac{1}{927824544} a^{12} - \frac{125}{463912272} a^{10} + \frac{169963}{154637424} a^{8} - \frac{783487}{231956136} a^{6} - \frac{1503053}{231956136} a^{4} + \frac{805169}{12886452} a^{2} + \frac{9799}{23094}$, $\frac{1}{12061719072} a^{13} - \frac{5339}{463912272} a^{11} + \frac{1231}{154637424} a^{9} + \frac{1661123}{231956136} a^{7} - \frac{16764617}{231956136} a^{5} - \frac{1261133}{12886452} a^{3} - \frac{1421237}{3102294} a$, $\frac{1}{318750237289834272} a^{14} + \frac{5542099}{24519249022294944} a^{12} + \frac{57057443503}{6129812255573736} a^{10} + \frac{6472779160685}{6129812255573736} a^{8} - \frac{1667610210929}{766226531946717} a^{6} - \frac{68263892950859}{3064906127786868} a^{4} - \frac{1752337705849625}{4427086629025476} a^{2} + \frac{16229116177}{39373930548}$, $\frac{1}{4143753084767845536} a^{15} - \frac{33659117}{4143753084767845536} a^{13} + \frac{949536612475}{79687559322458568} a^{11} - \frac{1176473707217}{159375118644917136} a^{9} + \frac{146295631508821}{39843779661229284} a^{7} - \frac{5270203930690807}{79687559322458568} a^{5} + \frac{5621655362149933}{57552126177331188} a^{3} - \frac{1108606218685}{103140011070486} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{20}\times C_{20}\times C_{40}\times C_{7400}$, which has order $473600000$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 52989569.66560047 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4^2$ (as 16T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4^2$
Character table for $C_4^2$

Intermediate fields

\(\Q(\sqrt{205}) \), \(\Q(\sqrt{82}) \), \(\Q(\sqrt{10}) \), 4.0.8615125.2, \(\Q(\sqrt{10}, \sqrt{82})\), 4.0.551368000.3, 4.0.141150208.4, 4.0.3528755200.2, 4.4.256000.1, 4.4.430336000.4, 8.0.304006671424000000.9, 8.0.12452113261527040000.5, 8.8.185189072896000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$41$41.8.6.1$x^{8} - 9881 x^{4} + 34857216$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
41.8.6.1$x^{8} - 9881 x^{4} + 34857216$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$