Properties

Label 16.0.96909452923...000.22
Degree $16$
Signature $[0, 8]$
Discriminant $2^{44}\cdot 5^{12}\cdot 41^{12}$
Root discriminant $364.46$
Ramified primes $2, 5, 41$
Class number $200806400$ (GRH)
Class group $[2, 2, 2, 4, 40, 156880]$ (GRH)
Galois group $C_4^2$ (as 16T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![18451182794256, 0, -2681723402496, 0, 177390624784, 0, -7050027072, 0, 185330844, 0, -3310304, 0, 39396, 0, -288, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 288*x^14 + 39396*x^12 - 3310304*x^10 + 185330844*x^8 - 7050027072*x^6 + 177390624784*x^4 - 2681723402496*x^2 + 18451182794256)
 
gp: K = bnfinit(x^16 - 288*x^14 + 39396*x^12 - 3310304*x^10 + 185330844*x^8 - 7050027072*x^6 + 177390624784*x^4 - 2681723402496*x^2 + 18451182794256, 1)
 

Normalized defining polynomial

\( x^{16} - 288 x^{14} + 39396 x^{12} - 3310304 x^{10} + 185330844 x^{8} - 7050027072 x^{6} + 177390624784 x^{4} - 2681723402496 x^{2} + 18451182794256 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(96909452923685986042145406976000000000000=2^{44}\cdot 5^{12}\cdot 41^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $364.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3280=2^{4}\cdot 5\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{3280}(1,·)$, $\chi_{3280}(2049,·)$, $\chi_{3280}(2633,·)$, $\chi_{3280}(501,·)$, $\chi_{3280}(2861,·)$, $\chi_{3280}(337,·)$, $\chi_{3280}(1557,·)$, $\chi_{3280}(329,·)$, $\chi_{3280}(3117,·)$, $\chi_{3280}(829,·)$, $\chi_{3280}(1713,·)$, $\chi_{3280}(3189,·)$, $\chi_{3280}(2697,·)$, $\chi_{3280}(1721,·)$, $\chi_{3280}(573,·)$, $\chi_{3280}(2133,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{5} + \frac{1}{3} a$, $\frac{1}{18} a^{6} + \frac{1}{18} a^{4} - \frac{1}{9} a^{2}$, $\frac{1}{18} a^{7} + \frac{1}{18} a^{5} - \frac{1}{9} a^{3}$, $\frac{1}{144} a^{8} - \frac{1}{36} a^{6} - \frac{5}{72} a^{4} + \frac{5}{18} a^{2} + \frac{1}{4}$, $\frac{1}{1296} a^{9} - \frac{1}{108} a^{7} + \frac{17}{216} a^{5} + \frac{1}{162} a^{3} + \frac{13}{36} a$, $\frac{1}{16848} a^{10} + \frac{17}{5616} a^{8} + \frac{11}{2808} a^{6} - \frac{527}{8424} a^{4} - \frac{217}{468} a^{2} - \frac{25}{52}$, $\frac{1}{522288} a^{11} + \frac{5}{29016} a^{9} + \frac{23}{2808} a^{7} + \frac{6113}{130572} a^{5} - \frac{1873}{43524} a^{3} + \frac{853}{2418} a$, $\frac{1}{40738464} a^{12} + \frac{19}{5092308} a^{10} + \frac{59}{109512} a^{8} + \frac{137767}{5092308} a^{6} - \frac{203209}{5092308} a^{4} - \frac{35297}{141453} a^{2} - \frac{329}{676}$, $\frac{1}{40738464} a^{13} - \frac{1}{10184616} a^{11} + \frac{659}{3394872} a^{9} + \frac{27173}{2546154} a^{7} + \frac{168695}{5092308} a^{5} - \frac{15415}{94302} a^{3} + \frac{2957}{20956} a$, $\frac{1}{161264392422348384} a^{14} - \frac{135205025}{12404953263257568} a^{12} - \frac{92915968075}{20158049052793548} a^{10} + \frac{120293539409569}{80632196211174192} a^{8} - \frac{37075931931133}{10079024526396774} a^{6} - \frac{1059589389196309}{40316098105587096} a^{4} - \frac{18802682840197}{172291017545244} a^{2} + \frac{69744074494}{222997135413}$, $\frac{1}{206902215477872976672} a^{15} + \frac{48808165685}{6465694233683530521} a^{13} + \frac{3689365897531}{3978888759189864936} a^{11} - \frac{71180915702237}{7957777518379729872} a^{9} + \frac{73207113127673}{76517091522882018} a^{7} - \frac{192546734625651979}{3978888759189864936} a^{5} + \frac{459164190364065821}{2873641881637124676} a^{3} + \frac{28731015299354569}{106431180801374988} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{40}\times C_{156880}$, which has order $200806400$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 546895017.4404038 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4^2$ (as 16T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4^2$
Character table for $C_4^2$

Intermediate fields

\(\Q(\sqrt{205}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{82}) \), 4.0.8615125.2, \(\Q(\sqrt{10}, \sqrt{82})\), 4.0.551368000.3, 4.0.256000.2, 4.0.430336000.8, 4.4.3528755200.2, 4.4.141150208.1, 8.0.304006671424000000.9, 8.0.185189072896000000.4, 8.8.12452113261527040000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$41$41.8.6.1$x^{8} - 9881 x^{4} + 34857216$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
41.8.6.1$x^{8} - 9881 x^{4} + 34857216$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$