Normalized defining polynomial
\( x^{16} - x^{14} - 2 x^{13} + 3 x^{12} + 2 x^{11} + 4 x^{10} - 56 x^{9} + 153 x^{8} - 436 x^{7} + 1118 x^{6} - 1798 x^{5} + 2098 x^{4} - 1870 x^{3} + 1184 x^{2} - 460 x + 85 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(968265199641600000000=2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{545} a^{14} - \frac{223}{545} a^{13} - \frac{48}{545} a^{12} - \frac{33}{109} a^{11} + \frac{251}{545} a^{10} + \frac{54}{545} a^{9} - \frac{244}{545} a^{8} - \frac{108}{545} a^{7} - \frac{269}{545} a^{6} + \frac{74}{545} a^{5} + \frac{12}{109} a^{4} - \frac{232}{545} a^{3} - \frac{81}{545} a^{2} - \frac{26}{109} a + \frac{29}{109}$, $\frac{1}{195414759826284815} a^{15} - \frac{176392120984283}{195414759826284815} a^{14} - \frac{85617473417851408}{195414759826284815} a^{13} + \frac{11701502671412231}{39082951965256963} a^{12} + \frac{15942726660491341}{195414759826284815} a^{11} - \frac{25056604255019376}{195414759826284815} a^{10} + \frac{39042361788797771}{195414759826284815} a^{9} - \frac{41994724511019108}{195414759826284815} a^{8} + \frac{24750848583746691}{195414759826284815} a^{7} + \frac{61538128623692874}{195414759826284815} a^{6} - \frac{967004214854210}{39082951965256963} a^{5} - \frac{40373347953460902}{195414759826284815} a^{4} - \frac{71669475319650071}{195414759826284815} a^{3} + \frac{10077148291230937}{39082951965256963} a^{2} + \frac{158796925044230}{640704130577983} a + \frac{3941152376045213}{39082951965256963}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{15261825484}{308119712695} a^{15} + \frac{3633902710}{61623942539} a^{14} - \frac{128903418}{308119712695} a^{13} - \frac{38640319501}{308119712695} a^{12} - \frac{1230632511}{308119712695} a^{11} + \frac{44771337328}{308119712695} a^{10} + \frac{116824994037}{308119712695} a^{9} - \frac{146384762069}{61623942539} a^{8} + \frac{1407230318023}{308119712695} a^{7} - \frac{4680278915932}{308119712695} a^{6} + \frac{10898773369858}{308119712695} a^{5} - \frac{12446493500298}{308119712695} a^{4} + \frac{12533259602932}{308119712695} a^{3} - \frac{8239711424247}{308119712695} a^{2} + \frac{515544567472}{61623942539} a - \frac{11324866614}{61623942539} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7906.86966275 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4:C_2$ (as 16T18):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_4\times C_2):C_2$ |
| Character table for $C_2 \times (C_4\times C_2):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |