Properties

Label 16.0.96826519964...0000.7
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $20.49$
Ramified primes $2, 3, 5, 7$
Class number $4$
Class group $[4]$
Galois group $Q_8 : C_2^2$ (as 16T23)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![81, 0, -81, 0, 387, 0, 333, 0, 298, 0, 279, 0, 113, 0, 18, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 18*x^14 + 113*x^12 + 279*x^10 + 298*x^8 + 333*x^6 + 387*x^4 - 81*x^2 + 81)
 
gp: K = bnfinit(x^16 + 18*x^14 + 113*x^12 + 279*x^10 + 298*x^8 + 333*x^6 + 387*x^4 - 81*x^2 + 81, 1)
 

Normalized defining polynomial

\( x^{16} + 18 x^{14} + 113 x^{12} + 279 x^{10} + 298 x^{8} + 333 x^{6} + 387 x^{4} - 81 x^{2} + 81 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(968265199641600000000=2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{324} a^{12} - \frac{1}{6} a^{11} - \frac{1}{12} a^{10} - \frac{121}{324} a^{8} - \frac{1}{3} a^{7} + \frac{5}{12} a^{6} - \frac{1}{2} a^{5} + \frac{25}{81} a^{4} - \frac{1}{6} a^{3} + \frac{7}{18} a^{2} + \frac{17}{36}$, $\frac{1}{324} a^{13} - \frac{1}{12} a^{11} - \frac{1}{6} a^{10} - \frac{121}{324} a^{9} - \frac{1}{2} a^{8} + \frac{5}{12} a^{7} - \frac{1}{3} a^{6} + \frac{25}{81} a^{5} - \frac{1}{2} a^{4} + \frac{7}{18} a^{3} + \frac{1}{3} a^{2} + \frac{17}{36} a - \frac{1}{2}$, $\frac{1}{8799516} a^{14} - \frac{101}{66663} a^{12} - \frac{103943}{4399758} a^{10} - \frac{1}{2} a^{9} + \frac{102580}{733293} a^{8} - \frac{2419451}{8799516} a^{6} - \frac{192029}{1466586} a^{4} - \frac{1}{2} a^{3} - \frac{3409}{977724} a^{2} - \frac{1}{2} a + \frac{15325}{325908}$, $\frac{1}{8799516} a^{15} - \frac{101}{66663} a^{13} - \frac{103943}{4399758} a^{11} - \frac{1}{6} a^{10} + \frac{102580}{733293} a^{9} - \frac{2419451}{8799516} a^{7} - \frac{1}{3} a^{6} - \frac{192029}{1466586} a^{5} - \frac{1}{2} a^{4} - \frac{3409}{977724} a^{3} - \frac{1}{6} a^{2} + \frac{15325}{325908} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3382.30486677 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$Q_8:C_2^2$ (as 16T23):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 17 conjugacy class representatives for $Q_8 : C_2^2$
Character table for $Q_8 : C_2^2$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{3}, \sqrt{-35})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{5}, \sqrt{-21})\), \(\Q(\sqrt{-7}, \sqrt{15})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{15}, \sqrt{-21})\), 8.0.31116960000.6, 8.4.635040000.1 x2, 8.0.216090000.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$