Properties

Label 16.0.96826519964...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $20.49$
Ramified primes $2, 3, 5, 7$
Class number $4$
Class group $[4]$
Galois group $Q_8 : C_2^2$ (as 16T23)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 7, -8, 0, 60, -67, -138, 379, -138, -67, 60, 0, -8, 7, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 7*x^14 - 8*x^13 + 60*x^11 - 67*x^10 - 138*x^9 + 379*x^8 - 138*x^7 - 67*x^6 + 60*x^5 - 8*x^3 + 7*x^2 - 4*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 7*x^14 - 8*x^13 + 60*x^11 - 67*x^10 - 138*x^9 + 379*x^8 - 138*x^7 - 67*x^6 + 60*x^5 - 8*x^3 + 7*x^2 - 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 7 x^{14} - 8 x^{13} + 60 x^{11} - 67 x^{10} - 138 x^{9} + 379 x^{8} - 138 x^{7} - 67 x^{6} + 60 x^{5} - 8 x^{3} + 7 x^{2} - 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(968265199641600000000=2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{1}{9} a^{2} - \frac{2}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{186543} a^{14} - \frac{7727}{186543} a^{13} + \frac{2594}{186543} a^{12} - \frac{3461}{186543} a^{11} + \frac{10111}{62181} a^{10} + \frac{19043}{186543} a^{9} - \frac{6899}{62181} a^{8} - \frac{22874}{186543} a^{7} - \frac{20717}{62181} a^{6} + \frac{19043}{186543} a^{5} + \frac{23929}{62181} a^{4} - \frac{3461}{186543} a^{3} + \frac{85502}{186543} a^{2} + \frac{13000}{186543} a - \frac{62180}{186543}$, $\frac{1}{1305801} a^{15} + \frac{2}{1305801} a^{14} - \frac{15452}{435267} a^{13} - \frac{673}{48363} a^{12} + \frac{18094}{1305801} a^{11} - \frac{146113}{1305801} a^{10} - \frac{206320}{1305801} a^{9} - \frac{184817}{1305801} a^{8} - \frac{323438}{1305801} a^{7} - \frac{308716}{1305801} a^{6} - \frac{486922}{1305801} a^{5} - \frac{562430}{1305801} a^{4} + \frac{210964}{435267} a^{3} - \frac{41644}{145089} a^{2} + \frac{635042}{1305801} a - \frac{572627}{1305801}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{314876}{435267} a^{15} - \frac{372772}{145089} a^{14} + \frac{1708682}{435267} a^{13} - \frac{1790024}{435267} a^{12} - \frac{716816}{435267} a^{11} + \frac{18460333}{435267} a^{10} - \frac{12752632}{435267} a^{9} - \frac{48780052}{435267} a^{8} + \frac{96317278}{435267} a^{7} - \frac{740996}{435267} a^{6} - \frac{17092324}{435267} a^{5} + \frac{6968288}{435267} a^{4} + \frac{2031584}{435267} a^{3} - \frac{1361084}{435267} a^{2} + \frac{667792}{145089} a - \frac{343460}{435267} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 32557.033374 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$Q_8:C_2^2$ (as 16T23):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 17 conjugacy class representatives for $Q_8 : C_2^2$
Character table for $Q_8 : C_2^2$

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-3}, \sqrt{-35})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-5}, \sqrt{7})\), \(\Q(\sqrt{15}, \sqrt{-21})\), \(\Q(\sqrt{-5}, \sqrt{-21})\), \(\Q(\sqrt{7}, \sqrt{15})\), 8.0.31116960000.2, 8.0.635040000.1 x2, 8.0.3457440000.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$7$7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$