Normalized defining polynomial
\( x^{16} - x^{15} + 1333 x^{14} + 1304 x^{13} + 646954 x^{12} + 1514696 x^{11} + 144386740 x^{10} + 375878024 x^{9} + 16054876969 x^{8} + 33103102647 x^{7} + 891724768485 x^{6} + 1485492313944 x^{5} + 25049349509778 x^{4} + 37916090753304 x^{3} + 358906331026404 x^{2} + 405991720954560 x + 2940120561720576 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9682510354914354784154938551289076131037184=2^{28}\cdot 3^{14}\cdot 11^{14}\cdot 2111^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $485.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 2111$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{214253416033073418855931200637952266654301433131985348916132281509769688762770978758646169554603612717147893632} a^{15} + \frac{637938536372088140024046063699839395573605122116082387190181874926852731799710522110375502276741484494829129}{6911400517195916737288103246385556988848433326838237061810718758379667379444225121246650630793664926359609472} a^{14} + \frac{444179325800146247061640486467091061843161765419551396691878846277406281085885928730517833684814340074299331}{6911400517195916737288103246385556988848433326838237061810718758379667379444225121246650630793664926359609472} a^{13} + \frac{1384183859127338161234746937436216741857651322786209997012420451773231333910410341442898248469454048930639345}{13390838502067088678495700039872016665893839570749084307258267594360605547673186172415385597162725794821743352} a^{12} - \frac{39408531195806801158698326620602956162366967425334285832303520664908211502793443932010159323980168713879843947}{107126708016536709427965600318976133327150716565992674458066140754884844381385489379323084777301806358573946816} a^{11} + \frac{10566603437299083535950476684153191416269653899639683639871683420904897881494757200630114872019766698221955351}{26781677004134177356991400079744033331787679141498168614516535188721211095346372344830771194325451589643486704} a^{10} + \frac{24529405276524453003410406512777764777885908676662072843280261221135837841379154673681581277022922431897305981}{53563354008268354713982800159488066663575358282996337229033070377442422190692744689661542388650903179286973408} a^{9} + \frac{12115308571602109521088007957729304068026041678022307547628352579600520093780114064580668574320382101760155421}{26781677004134177356991400079744033331787679141498168614516535188721211095346372344830771194325451589643486704} a^{8} - \frac{76832737619223259886271830192662418310030847244124155760819900751298489285530591650057961361025425734163781783}{214253416033073418855931200637952266654301433131985348916132281509769688762770978758646169554603612717147893632} a^{7} - \frac{26349032507024760679489262832398678455210246806483566758294217889816592737569508794907251590714854939827694641}{214253416033073418855931200637952266654301433131985348916132281509769688762770978758646169554603612717147893632} a^{6} + \frac{3291737429903049400212954967021967901249931306991277706985795783264951344383422855324984177809067188938196749}{214253416033073418855931200637952266654301433131985348916132281509769688762770978758646169554603612717147893632} a^{5} - \frac{1149955504727939275016178699398056356950657712241680164445831964998077831320219180237159674006960343033853547}{13390838502067088678495700039872016665893839570749084307258267594360605547673186172415385597162725794821743352} a^{4} - \frac{45022939929165336778572107118211981204169690136526650509308563600338985149772624071854484896232680492775249719}{107126708016536709427965600318976133327150716565992674458066140754884844381385489379323084777301806358573946816} a^{3} + \frac{9907696774362029827636180922553920411905100312694067770871606435277342551456402395662059476666404487757155625}{26781677004134177356991400079744033331787679141498168614516535188721211095346372344830771194325451589643486704} a^{2} + \frac{3881637164224963352467390317700706620052029396721270504494824086163930090536854061683473086497657860673039721}{53563354008268354713982800159488066663575358282996337229033070377442422190692744689661542388650903179286973408} a + \frac{170167425161694055700406375812386918694049841042711638436932826887608142286841600694612103560190865223611037}{515032250079503410711373078456616025611301521951887857971471830552330982602814852785207138352412530570067052}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{51068982}$, which has order $6536829696$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 680881.531768 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T493):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), 4.4.95832.1, 4.4.287496.1, 4.4.13068.1, 8.8.330615800064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.8.24.22 | $x^{8} + 4 x^{4} + 36$ | $8$ | $1$ | $24$ | $D_4\times C_2$ | $[2, 3, 4]^{2}$ | |
| $3$ | 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 11 | Data not computed | ||||||
| 2111 | Data not computed | ||||||