Normalized defining polynomial
\( x^{16} - 2 x^{15} - 189 x^{14} - 1329 x^{13} + 29338 x^{12} + 275627 x^{11} - 1814397 x^{10} - 29359470 x^{9} + 74993769 x^{8} + 2204480747 x^{7} + 76437998 x^{6} - 96096389750 x^{5} + 104869687622 x^{4} + 3826741307380 x^{3} + 1482211608009 x^{2} - 59659550358172 x + 85829254185005 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(966064060320802955505014160902035909033=71^{12}\cdot 73^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $273.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{15} + \frac{59068208033483438874253289368743350304870691181880407863918024854870327373219939537536028680526992}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{14} + \frac{99421062381958095293859901861350365242369638255423589018681384314072915304750830185795826249604564}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{13} - \frac{25626374814348201064483352983478879435964656727589624685802586562240337093628684484436541695504458}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{12} + \frac{104412346131168549476616834437217210397325447971919237380664579825918815874957498025130996922956111}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{11} + \frac{135905034905979219602105316200560198803196785030588487321272952871748197605829450382374775383133696}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{10} - \frac{74154285767801187662712727947908538563012676948073592717730522122850727481105527567383208029182173}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{9} - \frac{47442765702562526699878039808567616083276771531510841488414782168117522144555138475135574503215202}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{8} + \frac{103978434826271345062856011078243568345337644467552039858150524841612138398160942868395801097861011}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{7} + \frac{124518636962993211319880553926993627821217647946892416996169730329234220089813707417436326482757086}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{6} - \frac{20145758840060236668743533932250634009456524289636855680410860876096238191121789474473843702036968}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{5} + \frac{38830070381879054606943862840762381295007863686046438216285952085351527266877162685811983583862518}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{4} + \frac{134112886849146443670150308784112076084036794182556498394475084321384372473490002315960563075090844}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{3} - \frac{99973353847593091851944971475164845127117863121108415721878919526637039244272983379796135106251524}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a^{2} + \frac{146852054231145666913561361484764945087330004234530093819516976700015886417567547502847753695370398}{296076058072799029442241208769846017021453099789211617880784276985611268095538624454340378188581435} a + \frac{12118785995154105769971483165080966752813784615250523569866579188596968982859981188298265864895387}{59215211614559805888448241753969203404290619957842323576156855397122253619107724890868075637716287}$
Class group and class number
$C_{2}\times C_{14}$, which has order $28$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 378844007220 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.367993.1, 8.0.9885575907577.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | $16$ | $16$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 73 | Data not computed | ||||||