Properties

Label 16.0.96481321390...3536.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{36}\cdot 17^{4}\cdot 41^{2}$
Root discriminant $15.36$
Ramified primes $2, 17, 41$
Class number $1$
Class group Trivial
Galois group $C_2\times D_4^2.C_2$ (as 16T509)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, 8, -36, 84, 12, 24, -84, 106, -60, -8, 28, -12, -4, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 8*x^14 - 4*x^13 - 12*x^12 + 28*x^11 - 8*x^10 - 60*x^9 + 106*x^8 - 84*x^7 + 24*x^6 + 12*x^5 + 84*x^4 - 36*x^3 + 8*x^2 + 4*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 8*x^14 - 4*x^13 - 12*x^12 + 28*x^11 - 8*x^10 - 60*x^9 + 106*x^8 - 84*x^7 + 24*x^6 + 12*x^5 + 84*x^4 - 36*x^3 + 8*x^2 + 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 8 x^{14} - 4 x^{13} - 12 x^{12} + 28 x^{11} - 8 x^{10} - 60 x^{9} + 106 x^{8} - 84 x^{7} + 24 x^{6} + 12 x^{5} + 84 x^{4} - 36 x^{3} + 8 x^{2} + 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9648132139081793536=2^{36}\cdot 17^{4}\cdot 41^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.36$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{344} a^{14} - \frac{2}{43} a^{13} - \frac{1}{344} a^{12} + \frac{21}{172} a^{11} + \frac{29}{344} a^{10} + \frac{5}{172} a^{9} - \frac{23}{344} a^{8} + \frac{3}{86} a^{7} + \frac{113}{344} a^{6} - \frac{17}{86} a^{5} + \frac{143}{344} a^{4} - \frac{81}{172} a^{3} - \frac{55}{344} a^{2} - \frac{5}{172} a - \frac{83}{344}$, $\frac{1}{20923112} a^{15} + \frac{13021}{20923112} a^{14} - \frac{8915}{243292} a^{13} + \frac{13089}{10461556} a^{12} - \frac{1282583}{20923112} a^{11} + \frac{1826323}{20923112} a^{10} + \frac{386233}{10461556} a^{9} - \frac{6197}{121646} a^{8} + \frac{10354781}{20923112} a^{7} + \frac{6724789}{20923112} a^{6} - \frac{3119399}{10461556} a^{5} - \frac{772907}{10461556} a^{4} + \frac{7005069}{20923112} a^{3} + \frac{7375211}{20923112} a^{2} - \frac{327257}{1494508} a - \frac{522490}{2615389}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1093691}{10461556} a^{15} - \frac{4890903}{10461556} a^{14} + \frac{5343665}{5230778} a^{13} - \frac{8049021}{10461556} a^{12} - \frac{5965031}{5230778} a^{11} + \frac{36971215}{10461556} a^{10} - \frac{21248919}{10461556} a^{9} - \frac{16302791}{2615389} a^{8} + \frac{146913737}{10461556} a^{7} - \frac{137735993}{10461556} a^{6} + \frac{14528893}{2615389} a^{5} + \frac{7298639}{10461556} a^{4} + \frac{22436653}{2615389} a^{3} - \frac{88895623}{10461556} a^{2} + \frac{2736369}{1494508} a - \frac{1283705}{2615389} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8280.60242558 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_4^2.C_2$ (as 16T509):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 40 conjugacy class representatives for $C_2\times D_4^2.C_2$
Character table for $C_2\times D_4^2.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.4.4352.1, \(\Q(\zeta_{8})\), 4.0.1088.2, 8.4.3106144256.2, 8.0.18939904.2, 8.4.3106144256.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.18.53$x^{8} + 2 x^{6} + 4 x^{3} + 2$$8$$1$$18$$D_4\times C_2$$[2, 2, 3]^{2}$
2.8.18.53$x^{8} + 2 x^{6} + 4 x^{3} + 2$$8$$1$$18$$D_4\times C_2$$[2, 2, 3]^{2}$
$17$17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
41Data not computed