Properties

Label 16.0.96313927189...0625.4
Degree $16$
Signature $[0, 8]$
Discriminant $5^{8}\cdot 29^{8}\cdot 149^{4}$
Root discriminant $42.07$
Ramified primes $5, 29, 149$
Class number $12$ (GRH)
Class group $[2, 6]$ (GRH)
Galois group $C_4^2:C_2^2.C_2$ (as 16T382)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7391, -3965, -7716, 21361, -3769, -23051, 4448, 5148, 689, 1273, -171, -251, 80, -48, 21, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 21*x^14 - 48*x^13 + 80*x^12 - 251*x^11 - 171*x^10 + 1273*x^9 + 689*x^8 + 5148*x^7 + 4448*x^6 - 23051*x^5 - 3769*x^4 + 21361*x^3 - 7716*x^2 - 3965*x + 7391)
 
gp: K = bnfinit(x^16 - 2*x^15 + 21*x^14 - 48*x^13 + 80*x^12 - 251*x^11 - 171*x^10 + 1273*x^9 + 689*x^8 + 5148*x^7 + 4448*x^6 - 23051*x^5 - 3769*x^4 + 21361*x^3 - 7716*x^2 - 3965*x + 7391, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 21 x^{14} - 48 x^{13} + 80 x^{12} - 251 x^{11} - 171 x^{10} + 1273 x^{9} + 689 x^{8} + 5148 x^{7} + 4448 x^{6} - 23051 x^{5} - 3769 x^{4} + 21361 x^{3} - 7716 x^{2} - 3965 x + 7391 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(96313927189328563031640625=5^{8}\cdot 29^{8}\cdot 149^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 149$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{35} a^{14} + \frac{3}{35} a^{13} + \frac{3}{35} a^{12} + \frac{1}{35} a^{11} - \frac{1}{5} a^{10} - \frac{11}{35} a^{9} - \frac{9}{35} a^{8} - \frac{12}{35} a^{7} + \frac{16}{35} a^{6} - \frac{4}{35} a^{5} + \frac{3}{7} a^{4} + \frac{11}{35} a^{3} - \frac{9}{35} a^{2} - \frac{1}{7} a - \frac{17}{35}$, $\frac{1}{3654443286202086593584854933805} a^{15} - \frac{29156026582329095618478411519}{3654443286202086593584854933805} a^{14} + \frac{8556732246693374241684843422}{3654443286202086593584854933805} a^{13} + \frac{116163598885784486565349928241}{3654443286202086593584854933805} a^{12} + \frac{29057473333187309111905615998}{522063326600298084797836419115} a^{11} + \frac{1715425198362067336192571967244}{3654443286202086593584854933805} a^{10} + \frac{456884333876203644472188019786}{3654443286202086593584854933805} a^{9} - \frac{1125806508058276511321428138332}{3654443286202086593584854933805} a^{8} + \frac{1202932248629716967638401938017}{3654443286202086593584854933805} a^{7} + \frac{63379997565837676572837470645}{730888657240417318716970986761} a^{6} - \frac{1146557214760274387753994676581}{3654443286202086593584854933805} a^{5} - \frac{754640489348852136897150099483}{3654443286202086593584854933805} a^{4} - \frac{60017666834501279362995437229}{730888657240417318716970986761} a^{3} - \frac{93451876629112575677510759392}{3654443286202086593584854933805} a^{2} - \frac{263470633836455392152225315598}{3654443286202086593584854933805} a - \frac{250808203626540676005717310576}{522063326600298084797836419115}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 171161.961573 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4^2:C_2^2.C_2$ (as 16T382):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 26 conjugacy class representatives for $C_4^2:C_2^2.C_2$
Character table for $C_4^2:C_2^2.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 4.0.108025.2, 4.0.3725.1, 8.0.11669400625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.4.3.3$x^{4} + 58$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
29.4.3.4$x^{4} + 232$$4$$1$$3$$C_4$$[\ ]_{4}$
$149$$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
149.4.2.1$x^{4} + 745 x^{2} + 199809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
149.4.2.1$x^{4} + 745 x^{2} + 199809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$