Normalized defining polynomial
\( x^{16} - 4 x^{15} + 26 x^{14} - 48 x^{13} + 193 x^{12} - 238 x^{11} + 961 x^{10} - 976 x^{9} + 1127 x^{8} - 534 x^{7} + 2696 x^{6} + 4262 x^{5} + 8049 x^{4} + 4200 x^{3} + 22260 x^{2} + 2400 x + 400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96313927189328563031640625=5^{8}\cdot 29^{8}\cdot 149^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{30} a^{11} + \frac{1}{5} a^{9} - \frac{7}{30} a^{8} + \frac{1}{6} a^{7} - \frac{11}{30} a^{6} - \frac{7}{30} a^{5} + \frac{1}{30} a^{4} + \frac{2}{15} a^{3} - \frac{1}{15} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{60} a^{12} - \frac{1}{60} a^{11} + \frac{1}{12} a^{9} + \frac{1}{5} a^{8} + \frac{11}{60} a^{7} + \frac{7}{15} a^{6} - \frac{13}{60} a^{5} + \frac{3}{10} a^{4} + \frac{1}{20} a^{3} - \frac{29}{60} a^{2} - \frac{1}{3}$, $\frac{1}{60} a^{13} - \frac{1}{60} a^{11} - \frac{1}{60} a^{10} + \frac{1}{12} a^{9} - \frac{7}{60} a^{8} - \frac{3}{20} a^{7} + \frac{3}{20} a^{6} - \frac{1}{60} a^{5} + \frac{7}{20} a^{4} + \frac{7}{15} a^{3} - \frac{1}{12} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{360} a^{14} + \frac{1}{180} a^{13} - \frac{1}{180} a^{12} + \frac{1}{90} a^{11} + \frac{1}{40} a^{10} + \frac{2}{45} a^{9} + \frac{13}{360} a^{8} - \frac{31}{180} a^{7} + \frac{19}{360} a^{6} + \frac{29}{90} a^{5} + \frac{37}{90} a^{4} + \frac{13}{60} a^{3} - \frac{67}{360} a^{2} - \frac{5}{12} a + \frac{5}{18}$, $\frac{1}{50900235184130486067138960} a^{15} + \frac{1833224717821304656963}{3635731084580749004795640} a^{14} - \frac{23675029882535269485829}{25450117592065243033569480} a^{13} + \frac{5846860771716455821711}{1817865542290374502397820} a^{12} - \frac{183591884802499714267609}{16966745061376828689046320} a^{11} - \frac{112042160938663666297477}{2545011759206524303356948} a^{10} - \frac{8710269963695166184389719}{50900235184130486067138960} a^{9} - \frac{2624470208148222887838223}{25450117592065243033569480} a^{8} + \frac{2106168074111714764903291}{50900235184130486067138960} a^{7} + \frac{566990537088261136020533}{1272505879603262151678474} a^{6} + \frac{1952638653425624459540177}{6362529398016310758392370} a^{5} + \frac{9404288822140823325871}{403970120508972111643960} a^{4} + \frac{25135200631093615713316133}{50900235184130486067138960} a^{3} + \frac{1875440328675837691021363}{8483372530688414344523160} a^{2} - \frac{106386419134262386093273}{2545011759206524303356948} a + \frac{23885959501094565730102}{70694771089070119537693}$
Class group and class number
$C_{2}\times C_{48}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100117.930697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T373):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.0.626545.1, 4.0.626545.2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.4.65865543125.1, 8.0.9813965925625.2, 8.4.65865543125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $149$ | 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |