Normalized defining polynomial
\( x^{16} - 3 x^{15} + 31 x^{14} - 66 x^{13} + 344 x^{12} - 735 x^{11} + 3011 x^{10} - 7340 x^{9} + 16213 x^{8} - 32331 x^{7} + 58931 x^{6} - 85970 x^{5} + 93776 x^{4} - 76722 x^{3} + 52696 x^{2} - 26460 x + 7025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96313927189328563031640625=5^{8}\cdot 29^{8}\cdot 149^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{30} a^{11} - \frac{1}{10} a^{9} - \frac{4}{15} a^{8} + \frac{1}{5} a^{7} - \frac{11}{30} a^{6} + \frac{11}{30} a^{5} - \frac{4}{15} a^{4} - \frac{13}{30} a^{3} - \frac{1}{6} a^{2} + \frac{11}{30} a$, $\frac{1}{60} a^{12} - \frac{1}{60} a^{11} + \frac{1}{30} a^{10} - \frac{1}{12} a^{9} + \frac{29}{60} a^{8} + \frac{1}{20} a^{7} + \frac{11}{30} a^{6} - \frac{7}{30} a^{5} + \frac{1}{3} a^{4} + \frac{7}{15} a^{3} - \frac{19}{60} a^{2} - \frac{1}{10} a + \frac{5}{12}$, $\frac{1}{2100} a^{13} - \frac{1}{150} a^{12} + \frac{1}{100} a^{11} + \frac{19}{2100} a^{10} - \frac{22}{175} a^{9} - \frac{88}{525} a^{8} + \frac{659}{2100} a^{7} - \frac{23}{50} a^{6} - \frac{17}{350} a^{5} - \frac{73}{210} a^{4} + \frac{1019}{2100} a^{3} - \frac{199}{2100} a^{2} + \frac{499}{2100} a - \frac{19}{420}$, $\frac{1}{31222800} a^{14} + \frac{647}{15611400} a^{13} + \frac{4777}{743400} a^{12} - \frac{127429}{15611400} a^{11} + \frac{38356}{650475} a^{10} - \frac{2577929}{31222800} a^{9} - \frac{2101837}{5203800} a^{8} - \frac{14008639}{31222800} a^{7} - \frac{34729}{130095} a^{6} - \frac{7728083}{15611400} a^{5} + \frac{2819389}{31222800} a^{4} - \frac{495941}{4460400} a^{3} + \frac{7397291}{15611400} a^{2} - \frac{8498923}{31222800} a - \frac{136537}{6244560}$, $\frac{1}{1572578351685773485200} a^{15} + \frac{1972472175913}{314515670337154697040} a^{14} + \frac{12697331341148353}{98286146980360842825} a^{13} + \frac{1355628943178046017}{196572293960721685650} a^{12} + \frac{2262610080422195401}{157257835168577348520} a^{11} - \frac{57118312981538979941}{1572578351685773485200} a^{10} - \frac{1680452600922765023}{224654050240824783600} a^{9} - \frac{10222878072585380941}{1572578351685773485200} a^{8} - \frac{318954534844712407609}{1572578351685773485200} a^{7} - \frac{97298359622084344763}{786289175842886742600} a^{6} + \frac{193136430323372857201}{524192783895257828400} a^{5} + \frac{88869980584571780539}{196572293960721685650} a^{4} + \frac{146920046312659204033}{314515670337154697040} a^{3} - \frac{24320710579847557969}{174730927965085942800} a^{2} - \frac{17727767935718547631}{87365463982542971400} a - \frac{126773056036903794607}{314515670337154697040}$
Class group and class number
$C_{2}\times C_{96}$, which has order $192$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100117.930697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T373):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.0.108025.1, 4.0.108025.2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.4.65865543125.1, 8.0.9813965925625.1, 8.4.65865543125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $149$ | 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |