Normalized defining polynomial
\( x^{16} - 2 x^{15} + 12 x^{14} - 31 x^{13} + 142 x^{12} + 44 x^{11} + 793 x^{10} - 18 x^{9} + 7060 x^{8} - 7039 x^{7} + 5534 x^{6} - 3876 x^{5} + 2793 x^{4} - 866 x^{3} + 260 x^{2} - 72 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(961081251392109619140625=5^{12}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{5} - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{6} - \frac{1}{3} a$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{11} + \frac{1}{15} a^{10} - \frac{2}{5} a^{8} + \frac{2}{15} a^{7} + \frac{2}{15} a^{6} - \frac{7}{15} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{4}{15} a^{2} + \frac{1}{3} a - \frac{4}{15}$, $\frac{1}{1493089530} a^{13} + \frac{6237616}{746544765} a^{12} + \frac{29876752}{248848255} a^{11} + \frac{79659117}{497696510} a^{10} + \frac{95118329}{248848255} a^{9} - \frac{189700652}{746544765} a^{8} - \frac{379224851}{1493089530} a^{7} - \frac{8300429}{49769651} a^{6} + \frac{110949459}{248848255} a^{5} + \frac{31188095}{99539302} a^{4} - \frac{6390346}{149308953} a^{3} + \frac{342789383}{746544765} a^{2} - \frac{50487943}{497696510} a - \frac{53664189}{248848255}$, $\frac{1}{2986179060} a^{14} + \frac{2855626}{149308953} a^{12} - \frac{160816937}{995393020} a^{11} + \frac{106602191}{746544765} a^{10} + \frac{244159397}{746544765} a^{9} + \frac{40833959}{199078604} a^{8} + \frac{140798599}{746544765} a^{7} + \frac{123082274}{248848255} a^{6} + \frac{1054296073}{2986179060} a^{5} - \frac{220446607}{746544765} a^{4} + \frac{67118682}{248848255} a^{3} - \frac{941367479}{2986179060} a^{2} + \frac{80897157}{248848255} a - \frac{282736}{149308953}$, $\frac{1}{29861790600} a^{15} - \frac{1}{3732723825} a^{13} + \frac{845821513}{29861790600} a^{12} + \frac{218896696}{3732723825} a^{11} - \frac{12550247}{149308953} a^{10} + \frac{1713134051}{9953930200} a^{9} - \frac{1262997179}{3732723825} a^{8} - \frac{1064095028}{3732723825} a^{7} + \frac{6122983993}{29861790600} a^{6} - \frac{216777247}{746544765} a^{5} - \frac{603867334}{1244241275} a^{4} + \frac{9021838001}{29861790600} a^{3} - \frac{38573303}{3732723825} a^{2} + \frac{1395705104}{3732723825} a - \frac{306183472}{1244241275}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{38580599}{1990786040} a^{15} + \frac{115854013}{2986179060} a^{14} - \frac{115741797}{497696510} a^{13} + \frac{1195998569}{1990786040} a^{12} - \frac{38580599}{14019620} a^{11} - \frac{424386589}{497696510} a^{10} - \frac{91677516293}{5972358120} a^{9} + \frac{347225391}{995393020} a^{8} - \frac{13618951447}{99539302} a^{7} + \frac{271568836361}{1990786040} a^{6} - \frac{106752517433}{995393020} a^{5} + \frac{108388426813}{1493089530} a^{4} - \frac{107755613007}{1990786040} a^{3} + \frac{16705399367}{995393020} a^{2} - \frac{501547787}{99539302} a + \frac{347225391}{248848255} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95443.616698 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |