Normalized defining polynomial
\( x^{16} - x^{15} - 25 x^{14} + 15 x^{13} + 325 x^{12} - 128 x^{11} - 2757 x^{10} + 1080 x^{9} + 15780 x^{8} - 8660 x^{7} - 52137 x^{6} + 34507 x^{5} + 91200 x^{4} - 57600 x^{3} - 83455 x^{2} - 2951 x + 114211 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95908900025054931640625=5^{15}\cdot 61^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{429001316691763925014863520215669993419} a^{15} - \frac{62901574913578909106817215115430528673}{429001316691763925014863520215669993419} a^{14} - \frac{138294086616511108249365915012365013043}{429001316691763925014863520215669993419} a^{13} - \frac{13785720357676405900712536894281354124}{429001316691763925014863520215669993419} a^{12} + \frac{90151533814632051884275413182648957976}{429001316691763925014863520215669993419} a^{11} + \frac{166014982338922755125965397965865190533}{429001316691763925014863520215669993419} a^{10} + \frac{30966791363942865032751594336422881952}{429001316691763925014863520215669993419} a^{9} - \frac{149200208456503349237178044211945251575}{429001316691763925014863520215669993419} a^{8} + \frac{72846676671345781547261573230515178082}{429001316691763925014863520215669993419} a^{7} - \frac{157740514407453755897415673561841046866}{429001316691763925014863520215669993419} a^{6} + \frac{120736811446463143779581153299569965216}{429001316691763925014863520215669993419} a^{5} + \frac{81480354181244750084016790646941260352}{429001316691763925014863520215669993419} a^{4} - \frac{1716593018540463391385549627017204898}{10463446748579607927191793175991951059} a^{3} - \frac{78631072563784841687984733939231961672}{429001316691763925014863520215669993419} a^{2} + \frac{100579767795593127896988907953099672683}{429001316691763925014863520215669993419} a + \frac{78040508472082756324482187487341176}{2370173020396485773562781879644585599}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{648993816780874903190742429864}{23467059607885997758047345343015699} a^{15} + \frac{493691776511630340493188581220}{23467059607885997758047345343015699} a^{14} - \frac{15039804056742810028474520282041}{23467059607885997758047345343015699} a^{13} - \frac{17884219030350051560764550691012}{23467059607885997758047345343015699} a^{12} + \frac{173550601782775447170477380766785}{23467059607885997758047345343015699} a^{11} + \frac{245096036445770652941838187979105}{23467059607885997758047345343015699} a^{10} - \frac{1294643729658766015863479421236735}{23467059607885997758047345343015699} a^{9} - \frac{1842117215831005061311786690336554}{23467059607885997758047345343015699} a^{8} + \frac{6582017582288722678779936994141020}{23467059607885997758047345343015699} a^{7} + \frac{8109363306686047242436557248935976}{23467059607885997758047345343015699} a^{6} - \frac{18292679465844160830042192553121976}{23467059607885997758047345343015699} a^{5} - \frac{21839031992973350281943415928142264}{23467059607885997758047345343015699} a^{4} + \frac{623692187116800899728888737981251}{572367307509414579464569398610139} a^{3} + \frac{37987830732351311071960873695598458}{23467059607885997758047345343015699} a^{2} - \frac{16626480857684567426209195033657670}{23467059607885997758047345343015699} a - \frac{44480167561625722863125637622809136}{23467059607885997758047345343015699} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62915.747768 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.4765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |