Normalized defining polynomial
\( x^{16} - 6 x^{15} + 40 x^{14} - 155 x^{13} + 620 x^{12} - 1708 x^{11} + 5328 x^{10} - 10800 x^{9} + 27440 x^{8} - 40145 x^{7} + 84573 x^{6} - 77318 x^{5} + 145600 x^{4} - 53285 x^{3} + 118920 x^{2} - 2501 x + 38651 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95908900025054931640625=5^{15}\cdot 61^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13547372656667781176292264758323394971} a^{15} + \frac{204040532698108213322163469508552012}{13547372656667781176292264758323394971} a^{14} - \frac{56613206423337923363194851005675281}{134132402541265160161309552062607871} a^{13} - \frac{2035599438478142964997539598964872924}{13547372656667781176292264758323394971} a^{12} - \frac{957563932447051752074642813574743319}{13547372656667781176292264758323394971} a^{11} - \frac{5159144805658386451716204742924024660}{13547372656667781176292264758323394971} a^{10} + \frac{799351798565853896921078734043917243}{13547372656667781176292264758323394971} a^{9} - \frac{1943926401792122819496966251222357472}{13547372656667781176292264758323394971} a^{8} + \frac{4649314116483044873157401809718387764}{13547372656667781176292264758323394971} a^{7} - \frac{129624516169180791173970635301781837}{13547372656667781176292264758323394971} a^{6} + \frac{35673623220259108558839872832006270}{134132402541265160161309552062607871} a^{5} - \frac{4430231222470957602609366546684275237}{13547372656667781176292264758323394971} a^{4} + \frac{1069553076413018058889378780831370721}{13547372656667781176292264758323394971} a^{3} + \frac{6077961435425961514645922850496096977}{13547372656667781176292264758323394971} a^{2} - \frac{4058698453046804399008078898831121942}{13547372656667781176292264758323394971} a - \frac{1040592739671551836423377080658796654}{13547372656667781176292264758323394971}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{17982781986182203010418890355}{431293898846511769007426212419961} a^{15} - \frac{120921680303585526880837496655}{431293898846511769007426212419961} a^{14} + \frac{791771744363725970889351760946}{431293898846511769007426212419961} a^{13} - \frac{3304966327765618501337687500607}{431293898846511769007426212419961} a^{12} + \frac{13069857167757681698740717511656}{431293898846511769007426212419961} a^{11} - \frac{38543057474440799536149578825443}{431293898846511769007426212419961} a^{10} + \frac{115885761835393816694005975199318}{431293898846511769007426212419961} a^{9} - \frac{257414229823706293647471793195692}{431293898846511769007426212419961} a^{8} + \frac{602620554610488756567212900019487}{431293898846511769007426212419961} a^{7} - \frac{1019598187041216754343175187922004}{431293898846511769007426212419961} a^{6} + \frac{1818328235173812619051626060949346}{431293898846511769007426212419961} a^{5} - \frac{2138101961831543716992535561414320}{431293898846511769007426212419961} a^{4} + \frac{2717103167829994583299593841195734}{431293898846511769007426212419961} a^{3} - \frac{1855735658538018743590397102219997}{431293898846511769007426212419961} a^{2} + \frac{1044273792163187221173344146515831}{431293898846511769007426212419961} a - \frac{490430522787126080822323211357566}{431293898846511769007426212419961} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50484.8966192 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.4765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||