Normalized defining polynomial
\( x^{16} - 2 x^{15} - 25 x^{14} + 105 x^{13} + 120 x^{12} - 1241 x^{11} + 952 x^{10} + 3770 x^{9} - 1260 x^{8} - 16120 x^{7} + 10417 x^{6} + 19316 x^{5} + 8965 x^{4} - 45405 x^{3} - 13360 x^{2} + 32987 x + 16441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95908900025054931640625=5^{15}\cdot 61^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{14048769994376469258309589634742069691} a^{15} - \frac{6187477900071213437932604057717899234}{14048769994376469258309589634742069691} a^{14} - \frac{3823615470819622156718911584902646310}{14048769994376469258309589634742069691} a^{13} - \frac{3029383349747514365350666068838881787}{14048769994376469258309589634742069691} a^{12} + \frac{2370620360945212552113657661357321270}{14048769994376469258309589634742069691} a^{11} + \frac{6963231991597235551914103793719497093}{14048769994376469258309589634742069691} a^{10} + \frac{333007522402377036401968057543244663}{14048769994376469258309589634742069691} a^{9} - \frac{3782590391013325234435522123152610203}{14048769994376469258309589634742069691} a^{8} - \frac{2863911341272708911828259541545954948}{14048769994376469258309589634742069691} a^{7} - \frac{2456079375496586960696385030971436101}{14048769994376469258309589634742069691} a^{6} + \frac{5799321717223440988819141149245395239}{14048769994376469258309589634742069691} a^{5} - \frac{4782070284321093756505179253848281191}{14048769994376469258309589634742069691} a^{4} - \frac{3892518946604980048977693455027943241}{14048769994376469258309589634742069691} a^{3} - \frac{4161739274193508624446320880028882609}{14048769994376469258309589634742069691} a^{2} + \frac{3996846372416142813257975223863940233}{14048769994376469258309589634742069691} a - \frac{3716117352644118493292487106849144780}{14048769994376469258309589634742069691}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{81664122288694266418321963425}{680624484975363076319441385337051} a^{15} + \frac{139773676159878786551534782892}{680624484975363076319441385337051} a^{14} + \frac{2014329535162919843139983624605}{680624484975363076319441385337051} a^{13} - \frac{7908193824028987642770697456586}{680624484975363076319441385337051} a^{12} - \frac{10287094807768202559587071751609}{680624484975363076319441385337051} a^{11} + \frac{92803384693241078317628514446715}{680624484975363076319441385337051} a^{10} - \frac{64040809081118068139906843972639}{680624484975363076319441385337051} a^{9} - \frac{254390618100905823981236638719402}{680624484975363076319441385337051} a^{8} + \frac{35102033199619724724125145247624}{680624484975363076319441385337051} a^{7} + \frac{1086842029998122006457078473206200}{680624484975363076319441385337051} a^{6} - \frac{756040078430000113625760023549357}{680624484975363076319441385337051} a^{5} - \frac{878203798372110501961543920953063}{680624484975363076319441385337051} a^{4} - \frac{750898883087684590609079916138602}{680624484975363076319441385337051} a^{3} + \frac{2786636063282512482288172300619549}{680624484975363076319441385337051} a^{2} + \frac{63890780168146505137927215026877}{680624484975363076319441385337051} a - \frac{1134152209028960247746786067852780}{680624484975363076319441385337051} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63387.3336418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.4765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||