Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 96 x^{13} + 152 x^{12} - 96 x^{11} - 136 x^{10} + 328 x^{9} - 222 x^{8} + 104 x^{7} + 344 x^{6} + 768 x^{5} + 1652 x^{4} + 672 x^{3} - 192 x^{2} - 16 x + 46 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9573589958277615058944=2^{54}\cdot 3^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{115} a^{14} - \frac{9}{115} a^{13} + \frac{39}{115} a^{12} + \frac{57}{115} a^{11} + \frac{22}{115} a^{10} + \frac{1}{5} a^{9} + \frac{8}{115} a^{8} - \frac{48}{115} a^{7} - \frac{38}{115} a^{6} - \frac{7}{115} a^{5} - \frac{42}{115} a^{4} + \frac{47}{115} a^{3} - \frac{29}{115} a^{2} - \frac{18}{115} a - \frac{2}{5}$, $\frac{1}{94081372890106444585} a^{15} + \frac{179542071615132036}{94081372890106444585} a^{14} + \frac{371609856463712398}{4090494473482888895} a^{13} - \frac{43003174307332812723}{94081372890106444585} a^{12} - \frac{46094241078211104668}{94081372890106444585} a^{11} - \frac{9850383132886221072}{94081372890106444585} a^{10} - \frac{19996193693589900297}{94081372890106444585} a^{9} - \frac{132839384807133426}{1288785930001458145} a^{8} - \frac{34604037120509224458}{94081372890106444585} a^{7} - \frac{11007136284305161182}{94081372890106444585} a^{6} + \frac{17997054135941774703}{94081372890106444585} a^{5} - \frac{23819656504775121178}{94081372890106444585} a^{4} + \frac{2410624032497162131}{94081372890106444585} a^{3} - \frac{43598711490110063168}{94081372890106444585} a^{2} - \frac{23815780840654537356}{94081372890106444585} a + \frac{337039196921870652}{818098894696577779}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25742.4926099 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4):C_2$ (as 16T54):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $(C_2^2\times C_4):C_2$ |
| Character table for $(C_2^2\times C_4):C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), 4.0.27648.1 x2, \(\Q(\sqrt{2}, \sqrt{3})\), 4.0.13824.1 x2, 8.0.3057647616.7, 8.4.1358954496.1, 8.4.12230590464.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||