Normalized defining polynomial
\( x^{16} - 8 x^{14} - 8 x^{13} + 40 x^{12} - 8 x^{10} - 72 x^{9} + 310 x^{8} - 160 x^{7} + 280 x^{6} - 440 x^{5} - 184 x^{4} + 448 x^{3} + 1048 x^{2} - 344 x + 433 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9573589958277615058944=2^{54}\cdot 3^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{28} a^{12} - \frac{1}{14} a^{11} - \frac{3}{14} a^{10} + \frac{1}{28} a^{8} - \frac{1}{14} a^{7} + \frac{1}{7} a^{6} - \frac{1}{2} a^{5} - \frac{1}{28} a^{4} - \frac{1}{2} a^{2} + \frac{1}{14} a - \frac{9}{28}$, $\frac{1}{28} a^{13} - \frac{3}{28} a^{11} - \frac{5}{28} a^{10} - \frac{3}{14} a^{9} - \frac{1}{4} a^{8} - \frac{3}{14} a^{6} - \frac{1}{28} a^{5} - \frac{1}{14} a^{4} + \frac{1}{4} a^{3} - \frac{5}{28} a^{2} + \frac{1}{14} a - \frac{11}{28}$, $\frac{1}{24467548} a^{14} - \frac{836}{6116887} a^{13} + \frac{70513}{6116887} a^{12} + \frac{2307377}{24467548} a^{11} + \frac{388711}{12233774} a^{10} - \frac{700229}{24467548} a^{9} + \frac{2966807}{24467548} a^{8} + \frac{183810}{873841} a^{7} + \frac{5006053}{24467548} a^{6} - \frac{2060024}{6116887} a^{5} + \frac{538037}{12233774} a^{4} + \frac{5022243}{24467548} a^{3} + \frac{1392158}{6116887} a^{2} - \frac{3956399}{24467548} a + \frac{11985475}{24467548}$, $\frac{1}{1004516969271004} a^{15} - \frac{1023653}{502258484635502} a^{14} - \frac{16452137333743}{1004516969271004} a^{13} + \frac{882416483539}{1004516969271004} a^{12} + \frac{125505634360801}{1004516969271004} a^{11} + \frac{64335829489383}{502258484635502} a^{10} - \frac{4522763846541}{1004516969271004} a^{9} + \frac{20016019039215}{1004516969271004} a^{8} - \frac{15441176795423}{143502424181572} a^{7} - \frac{21356968442097}{502258484635502} a^{6} - \frac{27949284266155}{143502424181572} a^{5} + \frac{203389673246885}{1004516969271004} a^{4} + \frac{41400302091587}{1004516969271004} a^{3} - \frac{12556303659123}{71751212090786} a^{2} - \frac{50901112545151}{1004516969271004} a + \frac{396934206925341}{1004516969271004}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10073.1288883 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.0.18432.2, \(\Q(\sqrt{2}, \sqrt{3})\), 4.0.2048.2, 4.4.27648.1 x2, 4.4.13824.1 x2, 8.0.1358954496.3, 8.8.3057647616.1, 8.0.12230590464.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||