Normalized defining polynomial
\( x^{16} - 4 x^{15} + 125 x^{14} - 242 x^{13} + 6009 x^{12} - 2806 x^{11} + 152163 x^{10} + 77764 x^{9} + 2270754 x^{8} + 2268820 x^{7} + 20419650 x^{6} + 23613418 x^{5} + 108544365 x^{4} + 144136500 x^{3} + 338502596 x^{2} + 272619382 x + 291449783 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9558738202625098335096647974912=2^{18}\cdot 43^{3}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{78983760014298638946712435084208953827663524583339436321640617} a^{15} + \frac{22191107648752458414783317477506246024406568737838127563883663}{78983760014298638946712435084208953827663524583339436321640617} a^{14} - \frac{20464888941804294803768582490236281620673239596082896009137429}{78983760014298638946712435084208953827663524583339436321640617} a^{13} + \frac{31949037440506042459155085087524630391311587769574469038125425}{78983760014298638946712435084208953827663524583339436321640617} a^{12} + \frac{37833497623059248442899577296598410959436413932551144659700940}{78983760014298638946712435084208953827663524583339436321640617} a^{11} - \frac{30475836102081212821718261159124501555320014957617507048259177}{78983760014298638946712435084208953827663524583339436321640617} a^{10} - \frac{6315176674881303358819183707103772445978788334967090792720049}{78983760014298638946712435084208953827663524583339436321640617} a^{9} - \frac{18265576807064974327740878634741453399822136415111634218795461}{78983760014298638946712435084208953827663524583339436321640617} a^{8} + \frac{21427893078634753949836142796010153252265630515084351582191533}{78983760014298638946712435084208953827663524583339436321640617} a^{7} + \frac{28911558752234802428720698260600409766517133911264669171741493}{78983760014298638946712435084208953827663524583339436321640617} a^{6} - \frac{27962033836776064654516052621789715336576710101436068274238861}{78983760014298638946712435084208953827663524583339436321640617} a^{5} - \frac{21253750903367488777363363438101795966791736099678357341264167}{78983760014298638946712435084208953827663524583339436321640617} a^{4} - \frac{37080776242214980604328218596504064084317092658666891324762697}{78983760014298638946712435084208953827663524583339436321640617} a^{3} - \frac{20153248353500402529877467621153072357923647396354127430315371}{78983760014298638946712435084208953827663524583339436321640617} a^{2} + \frac{12878480024307483172077890513046583542809655674037585963472444}{78983760014298638946712435084208953827663524583339436321640617} a - \frac{21812037021560183027107357931414688653139791958417552518009406}{78983760014298638946712435084208953827663524583339436321640617}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{8750}$, which has order $70000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11805.8290435 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 116 conjugacy class representatives for t16n1851 are not computed |
| Character table for t16n1851 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.12.24 | $x^{12} - 100 x^{10} - 59 x^{8} + 104 x^{6} + 387 x^{4} + 444 x^{2} + 439$ | $2$ | $6$ | $12$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||