Normalized defining polynomial
\( x^{16} - 4 x^{15} + 54 x^{14} - 152 x^{13} + 1083 x^{12} - 2508 x^{11} + 11142 x^{10} - 23128 x^{9} + 63226 x^{8} - 128412 x^{7} + 222174 x^{6} - 365252 x^{5} + 530650 x^{4} - 568676 x^{3} + 537460 x^{2} - 655308 x + 394481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95428956661682176000000000000=2^{24}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(520=2^{3}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{520}(1,·)$, $\chi_{520}(129,·)$, $\chi_{520}(77,·)$, $\chi_{520}(333,·)$, $\chi_{520}(209,·)$, $\chi_{520}(213,·)$, $\chi_{520}(281,·)$, $\chi_{520}(157,·)$, $\chi_{520}(161,·)$, $\chi_{520}(489,·)$, $\chi_{520}(493,·)$, $\chi_{520}(369,·)$, $\chi_{520}(53,·)$, $\chi_{520}(441,·)$, $\chi_{520}(317,·)$, $\chi_{520}(437,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{42} a^{12} - \frac{1}{14} a^{11} - \frac{1}{6} a^{10} - \frac{3}{14} a^{9} - \frac{3}{7} a^{7} - \frac{1}{3} a^{6} + \frac{3}{7} a^{5} - \frac{1}{14} a^{4} - \frac{3}{14} a^{3} + \frac{1}{3} a^{2} - \frac{1}{7} a + \frac{1}{21}$, $\frac{1}{1218} a^{13} + \frac{2}{609} a^{12} - \frac{19}{174} a^{11} - \frac{289}{1218} a^{10} + \frac{6}{29} a^{9} + \frac{15}{406} a^{8} + \frac{14}{87} a^{7} + \frac{191}{609} a^{6} - \frac{85}{406} a^{5} + \frac{100}{203} a^{4} - \frac{14}{87} a^{3} + \frac{407}{1218} a^{2} - \frac{230}{609} a - \frac{14}{87}$, $\frac{1}{12126345882} a^{14} + \frac{4170665}{12126345882} a^{13} - \frac{1097921}{139383286} a^{12} + \frac{94893464}{866167563} a^{11} + \frac{1219891780}{6063172941} a^{10} - \frac{48791635}{4042115294} a^{9} - \frac{2748869339}{12126345882} a^{8} - \frac{1212531515}{6063172941} a^{7} - \frac{564726241}{6063172941} a^{6} - \frac{431729331}{4042115294} a^{5} + \frac{1530454369}{6063172941} a^{4} + \frac{646203571}{1732335126} a^{3} + \frac{384600521}{866167563} a^{2} - \frac{149262265}{866167563} a + \frac{1016329049}{12126345882}$, $\frac{1}{36333186291998487654798} a^{15} - \frac{1384220176567}{36333186291998487654798} a^{14} + \frac{300442267129318669}{865075864095202087019} a^{13} - \frac{83049565509001737616}{18166593145999243827399} a^{12} - \frac{3285593489709569728247}{18166593145999243827399} a^{11} + \frac{1354739637922678102982}{6055531048666414609133} a^{10} + \frac{1099841366517231182633}{18166593145999243827399} a^{9} + \frac{6807261943458208313951}{36333186291998487654798} a^{8} + \frac{1795774088485513419653}{18166593145999243827399} a^{7} - \frac{4719707460209894807479}{12111062097332829218266} a^{6} - \frac{8158344536396235289165}{36333186291998487654798} a^{5} + \frac{96780620543006572181}{1252868492827534057062} a^{4} + \frac{580902451235244232201}{5190455184571212522114} a^{3} + \frac{537688935855705712661}{1252868492827534057062} a^{2} - \frac{9136989770300376666103}{36333186291998487654798} a - \frac{1193087440528476067611}{6055531048666414609133}$
Class group and class number
$C_{2}\times C_{20}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1609101.0076496245 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||