Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} + 21 x^{13} + 27 x^{12} - 59 x^{11} - 10 x^{10} - 92 x^{9} + 552 x^{8} + 843 x^{7} - 1950 x^{6} - 3761 x^{5} + 64 x^{4} + 3822 x^{3} + 5642 x^{2} + 3549 x + 1521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9534424039639863880321=13^{8}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{39} a^{10} + \frac{2}{39} a^{9} + \frac{5}{39} a^{8} - \frac{19}{39} a^{7} - \frac{7}{39} a^{6} + \frac{5}{39} a^{5} - \frac{16}{39} a^{4} + \frac{5}{39} a^{3} + \frac{10}{39} a^{2}$, $\frac{1}{39} a^{11} + \frac{1}{39} a^{9} - \frac{1}{13} a^{8} + \frac{6}{13} a^{7} + \frac{2}{13} a^{6} - \frac{5}{13} a^{4} - \frac{1}{3} a^{3} + \frac{2}{13} a^{2} - \frac{1}{3} a$, $\frac{1}{39} a^{12} - \frac{5}{39} a^{9} + \frac{4}{13} a^{7} - \frac{2}{13} a^{6} + \frac{2}{13} a^{5} - \frac{10}{39} a^{4} - \frac{4}{13} a^{3} + \frac{1}{13} a^{2} - \frac{1}{3} a$, $\frac{1}{117} a^{13} - \frac{1}{117} a^{10} - \frac{5}{117} a^{9} + \frac{19}{117} a^{8} - \frac{56}{117} a^{7} + \frac{43}{117} a^{6} + \frac{4}{13} a^{5} + \frac{28}{117} a^{4} + \frac{10}{117} a^{3} + \frac{14}{117} a^{2} + \frac{1}{3} a$, $\frac{1}{1287} a^{14} + \frac{4}{1287} a^{13} - \frac{2}{429} a^{12} - \frac{16}{1287} a^{11} + \frac{5}{429} a^{10} + \frac{101}{1287} a^{9} - \frac{10}{1287} a^{8} - \frac{4}{1287} a^{7} - \frac{443}{1287} a^{6} + \frac{529}{1287} a^{5} - \frac{406}{1287} a^{4} + \frac{82}{429} a^{3} - \frac{553}{1287} a^{2} + \frac{5}{33} a - \frac{3}{11}$, $\frac{1}{81132291731390885271} a^{15} + \frac{704204005648358}{2458554294890632887} a^{14} + \frac{20471286403872851}{7375662884671898661} a^{13} - \frac{567232580702922544}{81132291731390885271} a^{12} + \frac{493687226493027283}{81132291731390885271} a^{11} - \frac{97637798685958807}{27044097243796961757} a^{10} - \frac{3794107082196914512}{81132291731390885271} a^{9} + \frac{7018005838894773308}{81132291731390885271} a^{8} + \frac{5371755096169755790}{81132291731390885271} a^{7} - \frac{28004065838725071874}{81132291731390885271} a^{6} + \frac{17747082789511078792}{81132291731390885271} a^{5} - \frac{335765412864271940}{2458554294890632887} a^{4} - \frac{15097207982375955092}{81132291731390885271} a^{3} + \frac{39812909459496801065}{81132291731390885271} a^{2} + \frac{292904678212722151}{2080315172599766289} a + \frac{32532332650457641}{693438390866588763}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26474.6238892 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-559}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{13}, \sqrt{-43})\), 4.2.7267.1 x2, 4.0.24037.1 x2, 8.0.97644375361.1, 8.2.2270799427.1 x4, 8.0.7511105797.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |