Normalized defining polynomial
\( x^{16} - 4 x^{15} + 16 x^{14} - 30 x^{13} + 29 x^{12} + 8 x^{11} - 42 x^{10} + 10 x^{9} + 28 x^{8} - 10 x^{7} - 42 x^{6} - 8 x^{5} + 29 x^{4} + 30 x^{3} + 16 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95224002328145166336=2^{20}\cdot 3^{8}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{222} a^{13} - \frac{8}{111} a^{12} - \frac{8}{111} a^{11} + \frac{1}{74} a^{10} + \frac{5}{111} a^{9} + \frac{5}{74} a^{8} + \frac{55}{111} a^{7} - \frac{34}{111} a^{6} + \frac{8}{111} a^{5} - \frac{23}{222} a^{4} + \frac{46}{111} a^{3} - \frac{89}{222} a^{2} + \frac{5}{74} a - \frac{40}{111}$, $\frac{1}{222} a^{14} - \frac{13}{222} a^{12} + \frac{1}{37} a^{11} - \frac{8}{111} a^{10} - \frac{5}{111} a^{9} + \frac{17}{222} a^{8} - \frac{5}{111} a^{7} + \frac{25}{74} a^{6} - \frac{13}{111} a^{5} - \frac{9}{37} a^{4} + \frac{7}{111} a^{3} - \frac{20}{111} a^{2} + \frac{43}{111} a - \frac{16}{37}$, $\frac{1}{222} a^{15} - \frac{17}{222} a^{12} - \frac{1}{111} a^{11} - \frac{4}{111} a^{10} - \frac{1}{222} a^{9} + \frac{25}{222} a^{7} - \frac{16}{37} a^{6} + \frac{1}{37} a^{5} - \frac{50}{111} a^{4} + \frac{23}{111} a^{3} - \frac{12}{37} a^{2} + \frac{33}{74} a + \frac{107}{222}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{44}{111} a^{15} - \frac{341}{222} a^{14} + \frac{664}{111} a^{13} - \frac{1145}{111} a^{12} + \frac{1505}{222} a^{11} + \frac{1334}{111} a^{10} - \frac{2947}{111} a^{9} + \frac{827}{111} a^{8} + \frac{3653}{222} a^{7} - \frac{1132}{111} a^{6} - \frac{3731}{222} a^{5} - \frac{68}{111} a^{4} + \frac{1451}{111} a^{3} + \frac{2443}{222} a^{2} + \frac{1193}{222} a + \frac{61}{37} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8765.05274681 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\wr C_2$ (as 16T46):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2\wr C_2$ |
| Character table for $C_2^2\wr C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |