Properties

Label 16.0.95058600040...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{14}\cdot 29^{2}\cdot 41^{4}$
Root discriminant $31.52$
Ramified primes $2, 5, 29, 41$
Class number $8$ (GRH)
Class group $[2, 2, 2]$ (GRH)
Galois group $C_2^2.C_2^5.C_2$ (as 16T610)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14641, -13310, 3267, -1980, 3053, -1710, 349, 300, -195, -60, -16, 70, 8, -10, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^14 - 10*x^13 + 8*x^12 + 70*x^11 - 16*x^10 - 60*x^9 - 195*x^8 + 300*x^7 + 349*x^6 - 1710*x^5 + 3053*x^4 - 1980*x^3 + 3267*x^2 - 13310*x + 14641)
 
gp: K = bnfinit(x^16 - 3*x^14 - 10*x^13 + 8*x^12 + 70*x^11 - 16*x^10 - 60*x^9 - 195*x^8 + 300*x^7 + 349*x^6 - 1710*x^5 + 3053*x^4 - 1980*x^3 + 3267*x^2 - 13310*x + 14641, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{14} - 10 x^{13} + 8 x^{12} + 70 x^{11} - 16 x^{10} - 60 x^{9} - 195 x^{8} + 300 x^{7} + 349 x^{6} - 1710 x^{5} + 3053 x^{4} - 1980 x^{3} + 3267 x^{2} - 13310 x + 14641 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(950586000400000000000000=2^{16}\cdot 5^{14}\cdot 29^{2}\cdot 41^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} - \frac{3}{11} a^{11} + \frac{1}{11} a^{10} - \frac{3}{11} a^{9} + \frac{4}{11} a^{8} - \frac{5}{11} a^{7} - \frac{5}{11} a^{6} + \frac{3}{11} a^{5} + \frac{3}{11} a^{4} - \frac{3}{11} a^{3} - \frac{5}{11} a^{2} - \frac{5}{11} a$, $\frac{1}{3509} a^{14} - \frac{10}{319} a^{13} - \frac{1455}{3509} a^{12} + \frac{1530}{3509} a^{11} + \frac{1229}{3509} a^{10} - \frac{1657}{3509} a^{9} + \frac{1601}{3509} a^{8} + \frac{853}{3509} a^{7} + \frac{113}{3509} a^{6} + \frac{24}{121} a^{5} - \frac{465}{3509} a^{4} + \frac{314}{3509} a^{3} - \frac{390}{3509} a^{2} - \frac{9}{319} a + \frac{7}{29}$, $\frac{1}{5374093244405091947520439} a^{15} - \frac{9627780808227062204}{488553931309553813410949} a^{14} - \frac{195424268481604727702833}{5374093244405091947520439} a^{13} + \frac{197968962454952142732873}{5374093244405091947520439} a^{12} + \frac{1337959295021453555144757}{5374093244405091947520439} a^{11} + \frac{40989675584229481875616}{5374093244405091947520439} a^{10} - \frac{837625368349438321090718}{5374093244405091947520439} a^{9} - \frac{176413653190872587557325}{5374093244405091947520439} a^{8} - \frac{2331398785874320515464449}{5374093244405091947520439} a^{7} + \frac{2229510349631510002164990}{5374093244405091947520439} a^{6} - \frac{2393836687947919372843809}{5374093244405091947520439} a^{5} - \frac{2119798117817317301153663}{5374093244405091947520439} a^{4} - \frac{933697333209571765440974}{5374093244405091947520439} a^{3} + \frac{197007559920193904063531}{488553931309553813410949} a^{2} + \frac{426894632535393172335}{44413993755413983037359} a + \frac{1413198066054068464368}{4037635795946725730669}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23258.903495 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^5.C_2$ (as 16T610):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 40 conjugacy class representatives for $C_2^2.C_2^5.C_2$
Character table for $C_2^2.C_2^5.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.4.5125.1, 4.4.16400.1, 8.8.6724000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.7.2$x^{8} - 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
5.8.7.2$x^{8} - 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$41$41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$