Normalized defining polynomial
\( x^{16} - 6 x^{15} + 19 x^{14} - 48 x^{13} + 95 x^{12} - 156 x^{11} + 220 x^{10} - 240 x^{9} + 250 x^{8} - 216 x^{7} + 128 x^{6} - 144 x^{5} + 86 x^{4} - 69 x^{3} + 113 x^{2} - 21 x + 49 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9502115648519722509=3^{12}\cdot 79^{3}\cdot 331^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 79, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} + \frac{3}{7} a^{11} - \frac{2}{7} a^{10} + \frac{2}{7} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{14} + \frac{3}{7} a^{12} - \frac{2}{7} a^{11} + \frac{2}{7} a^{9} + \frac{1}{7} a^{8} + \frac{3}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{88320425291} a^{15} + \frac{3715000111}{88320425291} a^{14} + \frac{461264436}{88320425291} a^{13} - \frac{12598547329}{88320425291} a^{12} - \frac{19080743949}{88320425291} a^{11} + \frac{3272503117}{88320425291} a^{10} + \frac{10122227096}{88320425291} a^{9} + \frac{41419764082}{88320425291} a^{8} - \frac{17232396423}{88320425291} a^{7} - \frac{9480070667}{88320425291} a^{6} + \frac{20083733219}{88320425291} a^{5} - \frac{26120230513}{88320425291} a^{4} - \frac{33485102317}{88320425291} a^{3} + \frac{20023408533}{88320425291} a^{2} + \frac{236745701}{1802457659} a - \frac{599132240}{1802457659}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{799418}{16517753} a^{15} + \frac{3454218}{16517753} a^{14} - \frac{5670894}{16517753} a^{13} + \frac{4900863}{16517753} a^{12} + \frac{8494133}{16517753} a^{11} - \frac{41160904}{16517753} a^{10} + \frac{87008543}{16517753} a^{9} - \frac{152003980}{16517753} a^{8} + \frac{144760933}{16517753} a^{7} - \frac{103035672}{16517753} a^{6} + \frac{101776127}{16517753} a^{5} - \frac{6627905}{16517753} a^{4} + \frac{20375671}{16517753} a^{3} - \frac{72386742}{16517753} a^{2} + \frac{3778449}{2359679} a - \frac{978229}{337097} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1994.62365846 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 73728 |
| The 104 conjugacy class representatives for t16n1871 are not computed |
| Character table for t16n1871 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 8.0.2118069.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $16$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 79 | Data not computed | ||||||
| 331 | Data not computed | ||||||