Properties

Label 16.0.948...000.1
Degree $16$
Signature $[0, 8]$
Discriminant $9.488\times 10^{19}$
Root discriminant \(17.72\)
Ramified primes $2,5,181$
Class number $1$
Class group trivial
Galois group $C_4\wr C_4$ (as 16T1192)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 + 14*x^14 + 84*x^12 + 288*x^10 + 639*x^8 + 941*x^6 + 821*x^4 + 362*x^2 + 181)
 
Copy content gp:K = bnfinit(y^16 + 14*y^14 + 84*y^12 + 288*y^10 + 639*y^8 + 941*y^6 + 821*y^4 + 362*y^2 + 181, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 14*x^14 + 84*x^12 + 288*x^10 + 639*x^8 + 941*x^6 + 821*x^4 + 362*x^2 + 181);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 + 14*x^14 + 84*x^12 + 288*x^10 + 639*x^8 + 941*x^6 + 821*x^4 + 362*x^2 + 181)
 

\( x^{16} + 14x^{14} + 84x^{12} + 288x^{10} + 639x^{8} + 941x^{6} + 821x^{4} + 362x^{2} + 181 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(94875856000000000000\) \(\medspace = 2^{16}\cdot 5^{12}\cdot 181^{3}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.72\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{15/8}5^{3/4}181^{3/4}\approx 605.2261387957756$
Ramified primes:   \(2\), \(5\), \(181\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{181}) \)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\zeta_{5})\)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{4}+\frac{1}{3}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{5}+\frac{1}{3}a$, $\frac{1}{3}a^{12}+\frac{1}{3}a^{6}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{7}+\frac{1}{3}a^{3}$, $\frac{1}{652773}a^{14}+\frac{100238}{652773}a^{12}+\frac{25642}{217591}a^{10}-\frac{2127}{19781}a^{8}-\frac{322706}{652773}a^{6}+\frac{92073}{217591}a^{4}-\frac{37154}{217591}a^{2}+\frac{172405}{652773}$, $\frac{1}{652773}a^{15}+\frac{100238}{652773}a^{13}+\frac{25642}{217591}a^{11}-\frac{2127}{19781}a^{9}-\frac{322706}{652773}a^{7}+\frac{92073}{217591}a^{5}-\frac{37154}{217591}a^{3}+\frac{172405}{652773}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -\frac{1018}{59343} a^{14} - \frac{3962}{19781} a^{12} - \frac{57032}{59343} a^{10} - \frac{152782}{59343} a^{8} - \frac{88431}{19781} a^{6} - \frac{87060}{19781} a^{4} - \frac{18281}{19781} a^{2} - \frac{11258}{59343} \)  (order $10$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{2653}{652773}a^{14}+\frac{35212}{652773}a^{12}+\frac{201911}{652773}a^{10}+\frac{63086}{59343}a^{8}+\frac{1604704}{652773}a^{6}+\frac{785340}{217591}a^{4}+\frac{2173393}{652773}a^{2}+\frac{1319729}{652773}$, $\frac{7924}{652773}a^{14}+\frac{26254}{217591}a^{12}+\frac{306824}{652773}a^{10}+\frac{18845}{19781}a^{8}+\frac{659861}{652773}a^{6}-\frac{206104}{652773}a^{4}-\frac{1110974}{652773}a^{2}-\frac{111420}{217591}$, $\frac{10399}{652773}a^{14}+\frac{38024}{217591}a^{12}+\frac{524140}{652773}a^{10}+\frac{127922}{59343}a^{8}+\frac{826600}{217591}a^{6}+\frac{2593682}{652773}a^{4}+\frac{512352}{217591}a^{2}+\frac{977710}{652773}$, $\frac{2653}{652773}a^{15}-\frac{1613}{652773}a^{14}+\frac{35212}{652773}a^{13}-\frac{13781}{652773}a^{12}+\frac{201911}{652773}a^{11}-\frac{18256}{217591}a^{10}+\frac{63086}{59343}a^{9}-\frac{13348}{59343}a^{8}+\frac{1604704}{652773}a^{7}-\frac{388076}{652773}a^{6}+\frac{785340}{217591}a^{5}-\frac{785243}{652773}a^{4}+\frac{2173393}{652773}a^{3}-\frac{812324}{652773}a^{2}+\frac{1319729}{652773}a-\frac{75186}{217591}$, $\frac{3554}{652773}a^{15}+\frac{32656}{652773}a^{14}+\frac{49385}{652773}a^{13}+\frac{368306}{652773}a^{12}+\frac{318299}{652773}a^{11}+\frac{1748089}{652773}a^{10}+\frac{36546}{19781}a^{9}+\frac{430300}{59343}a^{8}+\frac{951240}{217591}a^{7}+\frac{2782878}{217591}a^{6}+\frac{4263554}{652773}a^{5}+\frac{2892133}{217591}a^{4}+\frac{3578719}{652773}a^{3}+\frac{3440632}{652773}a^{2}+\frac{208705}{652773}a+\frac{326170}{217591}$, $\frac{6374}{217591}a^{15}-\frac{942}{19781}a^{14}+\frac{69836}{217591}a^{13}-\frac{9483}{19781}a^{12}+\frac{311392}{217591}a^{11}-\frac{118372}{59343}a^{10}+\frac{209317}{59343}a^{9}-\frac{281036}{59343}a^{8}+\frac{3578084}{652773}a^{7}-\frac{451250}{59343}a^{6}+\frac{2666876}{652773}a^{5}-\frac{137491}{19781}a^{4}-\frac{507701}{652773}a^{3}-\frac{159280}{59343}a^{2}+\frac{1095124}{652773}a-\frac{148967}{59343}$, $\frac{4405}{217591}a^{15}-\frac{3995}{59343}a^{14}+\frac{56251}{217591}a^{13}-\frac{43808}{59343}a^{12}+\frac{287434}{217591}a^{11}-\frac{199564}{59343}a^{10}+\frac{219079}{59343}a^{9}-\frac{172239}{19781}a^{8}+\frac{4358039}{652773}a^{7}-\frac{295523}{19781}a^{6}+\frac{4932062}{652773}a^{5}-\frac{882184}{59343}a^{4}+\frac{1861468}{652773}a^{3}-\frac{296116}{59343}a^{2}+\frac{371896}{652773}a-\frac{60455}{19781}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 10757.7141325 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 10757.7141325 \cdot 1}{10\cdot\sqrt{94875856000000000000}}\cr\approx \mathstrut & 0.268275549266 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 + 14*x^14 + 84*x^12 + 288*x^10 + 639*x^8 + 941*x^6 + 821*x^4 + 362*x^2 + 181) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 + 14*x^14 + 84*x^12 + 288*x^10 + 639*x^8 + 941*x^6 + 821*x^4 + 362*x^2 + 181, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 14*x^14 + 84*x^12 + 288*x^10 + 639*x^8 + 941*x^6 + 821*x^4 + 362*x^2 + 181); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 + 14*x^14 + 84*x^12 + 288*x^10 + 639*x^8 + 941*x^6 + 821*x^4 + 362*x^2 + 181); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\wr C_4$ (as 16T1192):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 1024
The 88 conjugacy class representatives for $C_4\wr C_4$
Character table for $C_4\wr C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.2828125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ R $16$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ $16$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ $16$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.2.16a5.1$x^{16} + 2 x^{12} + 4 x^{11} + 2 x^{10} + 2 x^{9} + 3 x^{8} + 4 x^{7} + 5 x^{6} + 6 x^{5} + 5 x^{4} + 6 x^{3} + 2 x^{2} + 2 x + 3$$2$$8$$16$16T306$$[2, 2, 2, 2]^{8}$$
\(5\) Copy content Toggle raw display 5.4.4.12a1.4$x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$$4$$4$$12$$C_4^2$$$[\ ]_{4}^{4}$$
\(181\) Copy content Toggle raw display 181.1.4.3a1.2$x^{4} + 362$$4$$1$$3$$C_4$$$[\ ]_{4}$$
181.4.1.0a1.1$x^{4} + 6 x^{2} + 105 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
181.4.1.0a1.1$x^{4} + 6 x^{2} + 105 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
181.4.1.0a1.1$x^{4} + 6 x^{2} + 105 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)