Normalized defining polynomial
\( x^{16} + 272 x^{14} + 30056 x^{12} + 1729376 x^{10} + 55123860 x^{8} + 954143904 x^{6} + 8110223184 x^{4} + 26261675072 x^{2} + 63285955489 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9477907118573134595068808298233856=2^{64}\cdot 3^{8}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2208=2^{5}\cdot 3\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2208}(1,·)$, $\chi_{2208}(1931,·)$, $\chi_{2208}(1933,·)$, $\chi_{2208}(1103,·)$, $\chi_{2208}(1105,·)$, $\chi_{2208}(275,·)$, $\chi_{2208}(277,·)$, $\chi_{2208}(2207,·)$, $\chi_{2208}(1379,·)$, $\chi_{2208}(1381,·)$, $\chi_{2208}(551,·)$, $\chi_{2208}(553,·)$, $\chi_{2208}(1655,·)$, $\chi_{2208}(1657,·)$, $\chi_{2208}(827,·)$, $\chi_{2208}(829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{22645} a^{8} + \frac{136}{22645} a^{6} + \frac{1156}{4529} a^{4} + \frac{10673}{22645} a^{2} + \frac{8527}{22645}$, $\frac{1}{5696734715} a^{9} - \frac{2410514824}{5696734715} a^{7} - \frac{402907742}{1139346943} a^{5} - \frac{133617472}{5696734715} a^{3} - \frac{1136249638}{5696734715} a$, $\frac{1}{5696734715} a^{10} + \frac{34}{1139346943} a^{8} + \frac{1101621719}{5696734715} a^{6} - \frac{224295006}{813819245} a^{4} - \frac{163691616}{5696734715} a^{2} + \frac{2554}{22645}$, $\frac{1}{5696734715} a^{11} + \frac{724242319}{5696734715} a^{7} - \frac{902567242}{5696734715} a^{5} - \frac{33665748}{813819245} a^{3} + \frac{115960268}{5696734715} a$, $\frac{1}{5696734715} a^{12} - \frac{19074}{5696734715} a^{8} - \frac{511525307}{1139346943} a^{6} + \frac{633503749}{5696734715} a^{4} + \frac{543121034}{5696734715} a^{2} - \frac{2053}{22645}$, $\frac{1}{5696734715} a^{13} - \frac{2371494746}{5696734715} a^{7} - \frac{202198116}{5696734715} a^{5} - \frac{1636122289}{5696734715} a^{3} + \frac{2733528312}{5696734715} a$, $\frac{1}{5696734715} a^{14} + \frac{3909}{813819245} a^{8} - \frac{341295721}{813819245} a^{6} - \frac{83150937}{813819245} a^{4} - \frac{2300075791}{5696734715} a^{2} - \frac{5721}{22645}$, $\frac{1}{5696734715} a^{15} - \frac{7613463}{162763849} a^{7} + \frac{233651833}{813819245} a^{5} + \frac{453571646}{1139346943} a^{3} + \frac{2678290032}{5696734715} a$
Class group and class number
$C_{2}\times C_{16}\times C_{32080}$, which has order $1026560$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-138}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-69}) \), \(\Q(\sqrt{2}, \sqrt{-69})\), \(\Q(\zeta_{16})^+\), 4.0.9750528.5, 8.0.380291185115136.75, \(\Q(\zeta_{32})^+\), 8.0.48677271694737408.34 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $23$ | 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |