Properties

Label 16.0.94552718836...5133.2
Degree $16$
Signature $[0, 8]$
Discriminant $3^{12}\cdot 37^{11}$
Root discriminant $27.29$
Ramified primes $3, 37$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group $C_4:D_4.D_4$ (as 16T681)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![879, -2034, 2790, -3006, 2488, -1230, 264, -365, 702, -453, 9, 129, -54, -8, 15, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 15*x^14 - 8*x^13 - 54*x^12 + 129*x^11 + 9*x^10 - 453*x^9 + 702*x^8 - 365*x^7 + 264*x^6 - 1230*x^5 + 2488*x^4 - 3006*x^3 + 2790*x^2 - 2034*x + 879)
 
gp: K = bnfinit(x^16 - 6*x^15 + 15*x^14 - 8*x^13 - 54*x^12 + 129*x^11 + 9*x^10 - 453*x^9 + 702*x^8 - 365*x^7 + 264*x^6 - 1230*x^5 + 2488*x^4 - 3006*x^3 + 2790*x^2 - 2034*x + 879, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 15 x^{14} - 8 x^{13} - 54 x^{12} + 129 x^{11} + 9 x^{10} - 453 x^{9} + 702 x^{8} - 365 x^{7} + 264 x^{6} - 1230 x^{5} + 2488 x^{4} - 3006 x^{3} + 2790 x^{2} - 2034 x + 879 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(94552718836098221345133=3^{12}\cdot 37^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{4}$, $\frac{1}{2331} a^{14} + \frac{106}{2331} a^{13} - \frac{2}{259} a^{12} - \frac{184}{777} a^{11} + \frac{299}{777} a^{10} + \frac{277}{777} a^{9} - \frac{211}{777} a^{8} + \frac{69}{259} a^{7} + \frac{22}{777} a^{6} + \frac{961}{2331} a^{5} + \frac{487}{2331} a^{4} - \frac{152}{777} a^{3} - \frac{19}{259} a^{2} + \frac{311}{777} a + \frac{284}{777}$, $\frac{1}{305194511566696059} a^{15} - \frac{11841811398481}{101731503855565353} a^{14} - \frac{25442130912404515}{305194511566696059} a^{13} + \frac{569641123626321}{33910501285188451} a^{12} - \frac{17356431480603181}{101731503855565353} a^{11} + \frac{865834216549093}{3082772844108041} a^{10} - \frac{10464633132832460}{33910501285188451} a^{9} + \frac{47939037212409239}{101731503855565353} a^{8} - \frac{10560212463315226}{33910501285188451} a^{7} - \frac{105504060551246948}{305194511566696059} a^{6} - \frac{5891471339463145}{33910501285188451} a^{5} - \frac{111352763133429142}{305194511566696059} a^{4} - \frac{27803974928477071}{101731503855565353} a^{3} + \frac{1265413415931485}{14533071979366479} a^{2} - \frac{1113408351365215}{3082772844108041} a + \frac{7827452131723327}{101731503855565353}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 81945.8128448 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4:D_4.D_4$ (as 16T681):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 19 conjugacy class representatives for $C_4:D_4.D_4$
Character table for $C_4:D_4.D_4$

Intermediate fields

\(\Q(\sqrt{37}) \), 4.2.4107.1, 8.0.5616860517.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ R $16$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.3.2$x^{4} - 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
3.8.7.1$x^{8} + 3$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
37Data not computed