Normalized defining polynomial
\( x^{16} - 5 x^{15} + 12 x^{14} - 32 x^{13} + 72 x^{12} + 90 x^{11} - 203 x^{10} - 298 x^{9} - 2060 x^{8} + 1226 x^{7} + 12621 x^{6} + 483 x^{5} - 28551 x^{4} + 42851 x^{3} + 228396 x^{2} + 275623 x + 114563 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(944386531066764936008646913=43^{8}\cdot 97^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17} a^{13} + \frac{6}{17} a^{12} + \frac{1}{17} a^{11} + \frac{6}{17} a^{10} + \frac{3}{17} a^{9} - \frac{3}{17} a^{8} + \frac{2}{17} a^{7} - \frac{6}{17} a^{6} - \frac{7}{17} a^{5} + \frac{5}{17} a^{4} - \frac{4}{17} a^{3} - \frac{3}{17} a^{2} - \frac{8}{17} a$, $\frac{1}{17} a^{14} - \frac{1}{17} a^{12} + \frac{1}{17} a^{10} - \frac{4}{17} a^{9} + \frac{3}{17} a^{8} - \frac{1}{17} a^{7} - \frac{5}{17} a^{6} - \frac{4}{17} a^{5} + \frac{4}{17} a^{3} - \frac{7}{17} a^{2} - \frac{3}{17} a$, $\frac{1}{346068351841230873382240481139575479} a^{15} - \frac{7794215512863052321712521462615844}{346068351841230873382240481139575479} a^{14} - \frac{3215657481613786547583383445469323}{346068351841230873382240481139575479} a^{13} - \frac{3079676285362890520359440899177099}{15046450080053516234010455701720673} a^{12} - \frac{4465998830353389273232331022704517}{31460759258293715762021861921779589} a^{11} - \frac{20659750428006881265220493457093179}{346068351841230873382240481139575479} a^{10} - \frac{121818898373362870653693772714002112}{346068351841230873382240481139575479} a^{9} + \frac{20069465012377546103909061189042604}{346068351841230873382240481139575479} a^{8} + \frac{856712413552259568784418111304188}{346068351841230873382240481139575479} a^{7} - \frac{77025003844166129967696539700700765}{346068351841230873382240481139575479} a^{6} - \frac{48974087931636630973749912833396657}{346068351841230873382240481139575479} a^{5} + \frac{150646903254907034710411869921141953}{346068351841230873382240481139575479} a^{4} + \frac{39383085118580958581133145216054359}{346068351841230873382240481139575479} a^{3} - \frac{100638879546075135748075852445669063}{346068351841230873382240481139575479} a^{2} + \frac{39609702740793792500557240122198}{96317381531096819755702889267903} a + \frac{374379990317207705349220047827612}{885085298826677425530026805983569}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9377944.14506 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 4.0.179353.1, 8.0.3120247365073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |