Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} - 2 x^{13} + 8 x^{12} - 6 x^{11} - 44 x^{10} - 40 x^{9} + 78 x^{8} + 158 x^{7} + 208 x^{6} + 144 x^{5} + 53 x^{4} - 2 x^{3} - 6 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9440732714731831296=2^{24}\cdot 3^{14}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{5}$, $\frac{1}{60836968611} a^{15} + \frac{29708733}{6759663179} a^{14} + \frac{981926383}{6759663179} a^{13} + \frac{5204172769}{60836968611} a^{12} - \frac{519143297}{6759663179} a^{11} + \frac{691367579}{20278989537} a^{10} + \frac{5378588284}{60836968611} a^{9} + \frac{2710513847}{20278989537} a^{8} - \frac{176056334}{6759663179} a^{7} - \frac{11343191290}{60836968611} a^{6} - \frac{10095778639}{20278989537} a^{5} - \frac{2694823753}{6759663179} a^{4} + \frac{22348721246}{60836968611} a^{3} - \frac{5175658885}{20278989537} a^{2} - \frac{7464749588}{20278989537} a + \frac{3296404691}{60836968611}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{78689948}{33081549} a^{15} + \frac{292320554}{33081549} a^{14} - \frac{387430534}{33081549} a^{13} + \frac{41568362}{33081549} a^{12} - \frac{608848130}{33081549} a^{11} + \frac{291135412}{33081549} a^{10} + \frac{1188966396}{11027183} a^{9} + \frac{1382432197}{11027183} a^{8} - \frac{1668121498}{11027183} a^{7} - \frac{13928067292}{33081549} a^{6} - \frac{20277581600}{33081549} a^{5} - \frac{16878336185}{33081549} a^{4} - \frac{8597206394}{33081549} a^{3} - \frac{2030428390}{33081549} a^{2} + \frac{29642432}{33081549} a + \frac{116065936}{11027183} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3343.78532124 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.(C_2\times D_4)$ (as 16T408):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^3.(C_2\times D_4)$ |
| Character table for $C_2^3.(C_2\times D_4)$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.1008.1, 4.0.189.1, 4.0.432.1, 8.0.192036096.1, 8.0.192036096.2, 8.0.9144576.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |