Normalized defining polynomial
\( x^{16} - 8 x^{15} + 16 x^{14} + 22 x^{13} - 90 x^{12} - 36 x^{11} + 320 x^{10} - 14 x^{9} - 778 x^{8} - 104 x^{7} + 1312 x^{6} + 774 x^{5} - 700 x^{4} - 744 x^{3} + 200 x^{2} + 318 x + 73 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(942874023903914622976=2^{28}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23} a^{14} - \frac{10}{23} a^{13} - \frac{9}{23} a^{12} + \frac{7}{23} a^{11} + \frac{2}{23} a^{10} - \frac{10}{23} a^{9} - \frac{3}{23} a^{8} + \frac{5}{23} a^{7} - \frac{9}{23} a^{6} + \frac{11}{23} a^{5} - \frac{7}{23} a^{4} - \frac{6}{23} a^{3} - \frac{5}{23} a^{2} - \frac{4}{23} a - \frac{4}{23}$, $\frac{1}{20872301038178069} a^{15} - \frac{17899293822611}{20872301038178069} a^{14} - \frac{5606255067706655}{20872301038178069} a^{13} + \frac{1092104665819618}{20872301038178069} a^{12} - \frac{1016407846779708}{20872301038178069} a^{11} + \frac{8404446115243721}{20872301038178069} a^{10} - \frac{1313701144469900}{20872301038178069} a^{9} + \frac{2791328835725507}{20872301038178069} a^{8} + \frac{7977605641176510}{20872301038178069} a^{7} + \frac{7131468710549749}{20872301038178069} a^{6} + \frac{8414957674768763}{20872301038178069} a^{5} - \frac{1325757084315534}{20872301038178069} a^{4} + \frac{7889227488038257}{20872301038178069} a^{3} - \frac{4518985841077289}{20872301038178069} a^{2} + \frac{390370406011578}{907491349486003} a + \frac{5666938651498920}{20872301038178069}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{9583562}{430944077} a^{15} + \frac{80201879}{430944077} a^{14} - \frac{184262035}{430944077} a^{13} - \frac{137816723}{430944077} a^{12} + \frac{923542476}{430944077} a^{11} - \frac{45849664}{430944077} a^{10} - \frac{3061991161}{430944077} a^{9} + \frac{1458635449}{430944077} a^{8} + \frac{6820653844}{430944077} a^{7} - \frac{1983614665}{430944077} a^{6} - \frac{11705251547}{430944077} a^{5} - \frac{2205434885}{430944077} a^{4} + \frac{8085337436}{430944077} a^{3} + \frac{4251042914}{430944077} a^{2} - \frac{3696079233}{430944077} a - \frac{1722879136}{430944077} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24183.7752159 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2.D_6$ (as 16T754):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $Q_8:C_2^2.D_6$ |
| Character table for $Q_8:C_2^2.D_6$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.592.1, 8.0.5607424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 37.4.3.3 | $x^{4} + 74$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.4 | $x^{4} + 296$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |