Normalized defining polynomial
\( x^{16} - 8 x^{13} - 12 x^{12} + 44 x^{11} + 16 x^{10} - 72 x^{9} + 94 x^{8} + 96 x^{7} - 340 x^{6} - 224 x^{5} + 408 x^{4} + 432 x^{3} + 152 x^{2} + 24 x + 2 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(942760328706207514624=2^{42}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14} + \frac{2}{29} a^{13} + \frac{9}{29} a^{12} - \frac{9}{29} a^{11} - \frac{14}{29} a^{10} + \frac{4}{29} a^{8} - \frac{6}{29} a^{7} - \frac{14}{29} a^{6} + \frac{9}{29} a^{5} + \frac{14}{29} a^{4} - \frac{6}{29} a^{3} + \frac{2}{29} a^{2} - \frac{12}{29}$, $\frac{1}{188975800882217} a^{15} - \frac{1909159598072}{188975800882217} a^{14} + \frac{13893603221737}{188975800882217} a^{13} - \frac{88411892480926}{188975800882217} a^{12} + \frac{2667622393475}{188975800882217} a^{11} - \frac{207134302230}{979149227369} a^{10} + \frac{5444319790978}{188975800882217} a^{9} - \frac{7953190565522}{188975800882217} a^{8} - \frac{89178111177331}{188975800882217} a^{7} + \frac{86571268614768}{188975800882217} a^{6} + \frac{55099522117690}{188975800882217} a^{5} - \frac{82386053334}{188975800882217} a^{4} + \frac{8722562465236}{188975800882217} a^{3} + \frac{66609924107590}{188975800882217} a^{2} - \frac{79310859712062}{188975800882217} a - \frac{72939649920694}{188975800882217}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{421989280}{1164267809} a^{15} - \frac{133572846}{1164267809} a^{14} + \frac{66159228}{1164267809} a^{13} - \frac{3419813912}{1164267809} a^{12} - \frac{3960399550}{1164267809} a^{11} + \frac{19584502620}{1164267809} a^{10} + \frac{463848000}{1164267809} a^{9} - \frac{29482063327}{1164267809} a^{8} + \frac{48476184296}{1164267809} a^{7} + \frac{24203509050}{1164267809} a^{6} - \frac{148198541064}{1164267809} a^{5} - \frac{48125025428}{1164267809} a^{4} + \frac{180021129892}{1164267809} a^{3} + \frac{125178016100}{1164267809} a^{2} + \frac{31722779148}{1164267809} a + \frac{3403576863}{1164267809} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17322.7614792 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:S_4.C_2$ (as 16T764):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $C_2^3:S_4.C_2$ |
| Character table for $C_2^3:S_4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.2.2816.1, 8.0.31719424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |