Normalized defining polynomial
\( x^{16} - 2 x^{15} + 10 x^{13} + 82 x^{12} - 244 x^{11} + 737 x^{10} - 1330 x^{9} + 6309 x^{8} - 11322 x^{7} + 29204 x^{6} - 37990 x^{5} + 108829 x^{4} - 109115 x^{3} + 246120 x^{2} - 143475 x + 336775 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(936758026692429703922265625=5^{8}\cdot 13^{4}\cdot 29^{6}\cdot 109^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{55} a^{13} - \frac{1}{55} a^{12} - \frac{14}{55} a^{10} + \frac{5}{11} a^{9} - \frac{24}{55} a^{8} - \frac{7}{55} a^{7} - \frac{1}{5} a^{6} + \frac{23}{55} a^{5} + \frac{1}{11} a^{4} + \frac{1}{11} a^{3} + \frac{2}{55} a^{2} - \frac{5}{11} a + \frac{2}{11}$, $\frac{1}{55} a^{14} - \frac{1}{55} a^{12} - \frac{14}{55} a^{11} + \frac{1}{5} a^{10} + \frac{1}{55} a^{9} + \frac{24}{55} a^{8} - \frac{18}{55} a^{7} + \frac{12}{55} a^{6} - \frac{27}{55} a^{5} + \frac{2}{11} a^{4} + \frac{7}{55} a^{3} - \frac{23}{55} a^{2} - \frac{3}{11} a + \frac{2}{11}$, $\frac{1}{1057711141229507327889334952267225} a^{15} + \frac{8396975442182625727468171173843}{1057711141229507327889334952267225} a^{14} + \frac{991057013605758300569418334836}{211542228245901465577866990453445} a^{13} + \frac{2958450030490789501942927607596}{42308445649180293115573398090689} a^{12} + \frac{2844218164320428603424285485628}{9703771937885388329259953690525} a^{11} - \frac{211147878716531553875318385605404}{1057711141229507327889334952267225} a^{10} + \frac{117524796174875531852737173561727}{1057711141229507327889334952267225} a^{9} + \frac{75701280238465047401630753110331}{211542228245901465577866990453445} a^{8} + \frac{510683246825236732684462968096679}{1057711141229507327889334952267225} a^{7} - \frac{305697076474859929665344580959627}{1057711141229507327889334952267225} a^{6} + \frac{238010053989854505339356184083664}{1057711141229507327889334952267225} a^{5} - \frac{7882190897644860992826586011732}{211542228245901465577866990453445} a^{4} + \frac{523601533605017081397892357668209}{1057711141229507327889334952267225} a^{3} + \frac{43113835415806795278282072699298}{211542228245901465577866990453445} a^{2} + \frac{85374116419882590990957589253882}{211542228245901465577866990453445} a + \frac{12871446307069253254974852535607}{42308445649180293115573398090689}$
Class group and class number
$C_{2}\times C_{372}$, which has order $744$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10968.6213178 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T511):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.79025.2, 4.4.725.1, 4.0.2725.1, 8.0.30606503013125.2, 8.8.2576088125.1, 8.0.6244950625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109 | Data not computed | ||||||