Properties

Label 16.0.93492089436...3456.9
Degree $16$
Signature $[0, 8]$
Discriminant $2^{44}\cdot 3^{12}$
Root discriminant $15.33$
Ramified primes $2, 3$
Class number $1$
Class group Trivial
Galois group $D_4\times C_2$ (as 16T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, -220, 972, -2780, 5736, -9024, 11224, -11276, 9297, -6328, 3580, -1668, 642, -196, 48, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 642*x^12 - 1668*x^11 + 3580*x^10 - 6328*x^9 + 9297*x^8 - 11276*x^7 + 11224*x^6 - 9024*x^5 + 5736*x^4 - 2780*x^3 + 972*x^2 - 220*x + 25)
 
gp: K = bnfinit(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 642*x^12 - 1668*x^11 + 3580*x^10 - 6328*x^9 + 9297*x^8 - 11276*x^7 + 11224*x^6 - 9024*x^5 + 5736*x^4 - 2780*x^3 + 972*x^2 - 220*x + 25, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + 9297 x^{8} - 11276 x^{7} + 11224 x^{6} - 9024 x^{5} + 5736 x^{4} - 2780 x^{3} + 972 x^{2} - 220 x + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9349208943630483456=2^{44}\cdot 3^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{65} a^{14} + \frac{6}{65} a^{13} - \frac{2}{65} a^{12} - \frac{14}{65} a^{11} + \frac{12}{65} a^{10} + \frac{12}{65} a^{9} - \frac{31}{65} a^{8} - \frac{11}{65} a^{7} + \frac{24}{65} a^{6} - \frac{2}{65} a^{5} - \frac{3}{13} a^{4} - \frac{9}{65} a^{3} - \frac{24}{65} a^{2} - \frac{12}{65} a - \frac{2}{13}$, $\frac{1}{17095} a^{15} + \frac{124}{17095} a^{14} - \frac{241}{3419} a^{13} + \frac{340}{3419} a^{12} + \frac{3859}{17095} a^{11} - \frac{4604}{17095} a^{10} + \frac{8379}{17095} a^{9} - \frac{1506}{3419} a^{8} - \frac{12}{263} a^{7} + \frac{4377}{17095} a^{6} - \frac{1657}{3419} a^{5} - \frac{674}{17095} a^{4} - \frac{6962}{17095} a^{3} - \frac{738}{17095} a^{2} + \frac{8493}{17095} a - \frac{1588}{3419}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1229}{1315} a^{15} - \frac{141262}{17095} a^{14} + \frac{856169}{17095} a^{13} - \frac{3642449}{17095} a^{12} + \frac{12106306}{17095} a^{11} - \frac{32236863}{17095} a^{10} + \frac{70027507}{17095} a^{9} - \frac{25115203}{3419} a^{8} + \frac{185376534}{17095} a^{7} - \frac{225133368}{17095} a^{6} + \frac{221440773}{17095} a^{5} - \frac{173497381}{17095} a^{4} + \frac{104335813}{17095} a^{3} - \frac{45658062}{17095} a^{2} + \frac{12999216}{17095} a - \frac{376745}{3419} \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10073.1288883 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_4$ (as 16T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16
The 10 conjugacy class representatives for $D_4\times C_2$
Character table for $D_4\times C_2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\zeta_{8})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{6})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{3})\), 4.4.13824.1 x2, 4.0.13824.1 x2, 4.0.27648.1 x2, 4.4.27648.1 x2, \(\Q(\zeta_{24})\), 8.0.191102976.5 x2, 8.0.3057647616.6 x2, 8.0.764411904.5 x2, 8.0.3057647616.5 x2, 8.0.3057647616.7, 8.8.3057647616.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$