Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 112 x^{13} + 264 x^{12} - 456 x^{11} + 532 x^{10} - 280 x^{9} - 222 x^{8} + 568 x^{7} - 380 x^{6} - 48 x^{5} + 264 x^{4} - 104 x^{3} - 12 x^{2} + 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9349208943630483456=2^{44}\cdot 3^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} + \frac{1}{4}$, $\frac{1}{4} a^{9} + \frac{1}{4} a$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} + \frac{1}{8} a^{4} - \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} + \frac{1}{8} a^{5} - \frac{1}{8} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} + \frac{1}{8} a^{6} - \frac{1}{8} a^{2}$, $\frac{1}{355903592} a^{15} - \frac{1000069}{16177436} a^{14} + \frac{923933}{44487949} a^{13} + \frac{171425}{4044359} a^{12} + \frac{68311}{2941352} a^{11} - \frac{9442833}{88975898} a^{10} - \frac{1730485}{88975898} a^{9} + \frac{6910641}{88975898} a^{8} + \frac{8502161}{355903592} a^{7} + \frac{28183757}{177951796} a^{6} - \frac{19397283}{44487949} a^{5} + \frac{2224448}{44487949} a^{4} - \frac{44308529}{355903592} a^{3} - \frac{1558409}{88975898} a^{2} + \frac{44023797}{88975898} a - \frac{30359581}{88975898}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1864801}{2404754} a^{15} + \frac{5467601}{874456} a^{14} - \frac{68136135}{2404754} a^{13} + \frac{38838505}{437228} a^{12} - \frac{4196977}{19874} a^{11} + \frac{3555014873}{9619016} a^{10} - \frac{2125995023}{4809508} a^{9} + \frac{614527425}{2404754} a^{8} + \frac{346856357}{2404754} a^{7} - \frac{4273615877}{9619016} a^{6} + \frac{791854059}{2404754} a^{5} + \frac{18046315}{4809508} a^{4} - \frac{476896053}{2404754} a^{3} + \frac{929392265}{9619016} a^{2} - \frac{11697495}{4809508} a - \frac{10554483}{2404754} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6164.45078274 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\wr C_2$ (as 16T39):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2\wr C_2$ |
| Character table for $C_2^2\wr C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |