Normalized defining polynomial
\( x^{16} - x^{15} - 88 x^{14} + 121 x^{13} + 3888 x^{12} - 2421 x^{11} - 93881 x^{10} - 85395 x^{9} + 1102409 x^{8} + 3857440 x^{7} + 7278998 x^{6} + 15382026 x^{5} + 37129668 x^{4} + 37380006 x^{3} + 32831156 x^{2} + 60659805 x + 373271957 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(933865201156678930433597550025801=11^{12}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2587} a^{13} - \frac{1089}{2587} a^{12} - \frac{51}{2587} a^{11} + \frac{82}{2587} a^{10} - \frac{8}{199} a^{9} + \frac{473}{2587} a^{8} + \frac{294}{2587} a^{7} + \frac{484}{2587} a^{6} - \frac{1110}{2587} a^{5} - \frac{471}{2587} a^{4} + \frac{340}{2587} a^{3} + \frac{93}{199} a^{2} + \frac{1188}{2587} a - \frac{124}{2587}$, $\frac{1}{1984229} a^{14} - \frac{111}{1984229} a^{13} - \frac{946091}{1984229} a^{12} - \frac{494760}{1984229} a^{11} - \frac{287262}{1984229} a^{10} + \frac{178157}{1984229} a^{9} + \frac{682783}{1984229} a^{8} - \frac{278537}{1984229} a^{7} - \frac{878172}{1984229} a^{6} - \frac{899787}{1984229} a^{5} - \frac{729346}{1984229} a^{4} + \frac{134530}{1984229} a^{3} + \frac{78941}{1984229} a^{2} + \frac{910801}{1984229} a - \frac{444647}{1984229}$, $\frac{1}{308573199331176394856854994355077628317181544166834604977} a^{15} - \frac{72168521147634956473971254631633510908432885507414}{308573199331176394856854994355077628317181544166834604977} a^{14} - \frac{28524540057487849743817288527042821891728647147438945}{308573199331176394856854994355077628317181544166834604977} a^{13} + \frac{55172268935146124193327553205414741352856281480642689778}{308573199331176394856854994355077628317181544166834604977} a^{12} + \frac{65679486853052781818183191327514989731110020552087164862}{308573199331176394856854994355077628317181544166834604977} a^{11} - \frac{49380189955090760279302490246826557413720192828345891580}{308573199331176394856854994355077628317181544166834604977} a^{10} - \frac{11230755069036769817631514809492791403161315064771418661}{308573199331176394856854994355077628317181544166834604977} a^{9} - \frac{414133329611686976104571347676483901671120797253849005}{5822135836437290468997264044435426949380783852204426509} a^{8} + \frac{28335911778537334529777955632176304709845038620065779098}{308573199331176394856854994355077628317181544166834604977} a^{7} - \frac{17685793494890046145883979732436748536227555597337911745}{308573199331176394856854994355077628317181544166834604977} a^{6} + \frac{106604883553025794980916839986909768397034242319995141653}{308573199331176394856854994355077628317181544166834604977} a^{5} + \frac{72742499559148830406910160065531028193688278186360839989}{308573199331176394856854994355077628317181544166834604977} a^{4} + \frac{142941746482099548565472558911892141185817413253340997865}{308573199331176394856854994355077628317181544166834604977} a^{3} + \frac{22207291677052763496789523933778921360674159472659642707}{308573199331176394856854994355077628317181544166834604977} a^{2} + \frac{72507937900197060314791581225963307621334591310943834664}{308573199331176394856854994355077628317181544166834604977} a + \frac{3121660428153754387959137068402984841509922647748227979}{308573199331176394856854994355077628317181544166834604977}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1253829574.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-319}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{29})\), 4.4.2951069.1, 4.0.24389.1, 8.0.8708808242761.1, 8.4.30559208123848349.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 29 | Data not computed | ||||||