Normalized defining polynomial
\( x^{16} - x^{15} - 10 x^{14} + 22 x^{13} + 35 x^{12} + 106 x^{11} + 51 x^{10} - 2326 x^{9} + 51 x^{8} + 20074 x^{7} - 6222 x^{6} - 93589 x^{5} + 179453 x^{4} - 200044 x^{3} - 1543984 x^{2} + 140608 x + 7311616 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(933248168570425273681640625=3^{8}\cdot 5^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(67,·)$, $\chi_{255}(16,·)$, $\chi_{255}(149,·)$, $\chi_{255}(89,·)$, $\chi_{255}(154,·)$, $\chi_{255}(98,·)$, $\chi_{255}(38,·)$, $\chi_{255}(103,·)$, $\chi_{255}(169,·)$, $\chi_{255}(47,·)$, $\chi_{255}(242,·)$, $\chi_{255}(52,·)$, $\chi_{255}(118,·)$, $\chi_{255}(251,·)$, $\chi_{255}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{10} + \frac{1}{8} a^{8} + \frac{1}{8} a^{6} + \frac{1}{8} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{2}$, $\frac{1}{2408787893096} a^{13} + \frac{16747250649}{2408787893096} a^{12} - \frac{96787943249}{2408787893096} a^{11} - \frac{87431813889}{2408787893096} a^{10} - \frac{35547506323}{2408787893096} a^{9} - \frac{385023926961}{2408787893096} a^{8} + \frac{228189153061}{2408787893096} a^{7} - \frac{505018880365}{2408787893096} a^{6} - \frac{541615401471}{2408787893096} a^{5} + \frac{1053983563011}{2408787893096} a^{4} + \frac{64679795530}{301098486637} a^{3} + \frac{236924878709}{1204393946548} a^{2} + \frac{87743322531}{1204393946548} a + \frac{5213042677}{23161422049}$, $\frac{1}{62628485220496} a^{14} - \frac{1}{62628485220496} a^{13} + \frac{356592327171}{7828560652562} a^{12} - \frac{241465043791}{3914280326281} a^{11} + \frac{3797558519803}{62628485220496} a^{10} + \frac{1929104844765}{15657121305124} a^{9} - \frac{13809956239197}{62628485220496} a^{8} - \frac{3152138990497}{15657121305124} a^{7} - \frac{7337350228885}{62628485220496} a^{6} + \frac{3198971338167}{15657121305124} a^{5} + \frac{11320228333345}{31314242610248} a^{4} - \frac{16115517515515}{62628485220496} a^{3} - \frac{6495613861645}{62628485220496} a^{2} - \frac{145975993981}{1204393946548} a + \frac{4784014035}{23161422049}$, $\frac{1}{3256681231465792} a^{15} - \frac{1}{3256681231465792} a^{14} - \frac{5}{1628340615732896} a^{13} + \frac{93918160365651}{1628340615732896} a^{12} - \frac{169986951237653}{3256681231465792} a^{11} + \frac{40945451238017}{1628340615732896} a^{10} - \frac{59623887796149}{3256681231465792} a^{9} - \frac{97218833220879}{1628340615732896} a^{8} + \frac{597796398349643}{3256681231465792} a^{7} + \frac{143909318817265}{1628340615732896} a^{6} + \frac{166617430376341}{1628340615732896} a^{5} - \frac{932387900075933}{3256681231465792} a^{4} + \frac{664363285640341}{3256681231465792} a^{3} - \frac{17151743306645}{62628485220496} a^{2} + \frac{292131954433}{602196973274} a - \frac{2155939585}{23161422049}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{107955145}{3256681231465792} a^{15} + \frac{5721622685}{3256681231465792} a^{14} + \frac{2560577027}{1628340615732896} a^{13} - \frac{29255844295}{1628340615732896} a^{12} + \frac{119722255805}{3256681231465792} a^{11} + \frac{92517559265}{1628340615732896} a^{10} + \frac{589543046845}{3256681231465792} a^{9} + \frac{2421918328993}{1628340615732896} a^{8} - \frac{13062896410435}{3256681231465792} a^{7} - \frac{940397268095}{1628340615732896} a^{6} + \frac{56680229555075}{1628340615732896} a^{5} - \frac{24824825368475}{3256681231465792} a^{4} - \frac{74341954504713}{3256681231465792} a^{3} + \frac{380541886125}{1204393946548} a^{2} - \frac{6801174135}{23161422049} a - \frac{61750342940}{23161422049} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 886036.8840713138 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||