Normalized defining polynomial
\( x^{16} - x^{15} + 10 x^{14} + 2 x^{13} + 5 x^{12} + 206 x^{11} + 21 x^{10} + 179 x^{9} + 1811 x^{8} + 919 x^{7} + 18978 x^{6} + 10441 x^{5} + 59108 x^{4} - 125819 x^{3} - 212699 x^{2} - 102242 x + 1079671 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(933248168570425273681640625=3^{8}\cdot 5^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(137,·)$, $\chi_{255}(203,·)$, $\chi_{255}(13,·)$, $\chi_{255}(16,·)$, $\chi_{255}(149,·)$, $\chi_{255}(89,·)$, $\chi_{255}(152,·)$, $\chi_{255}(217,·)$, $\chi_{255}(154,·)$, $\chi_{255}(157,·)$, $\chi_{255}(208,·)$, $\chi_{255}(169,·)$, $\chi_{255}(251,·)$, $\chi_{255}(188,·)$, $\chi_{255}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{354} a^{10} + \frac{5}{177} a^{8} + \frac{35}{354} a^{6} - \frac{1}{118} a^{5} + \frac{25}{177} a^{4} - \frac{5}{118} a^{3} + \frac{25}{354} a^{2} - \frac{5}{118} a + \frac{65}{177}$, $\frac{1}{354} a^{11} + \frac{5}{177} a^{9} + \frac{35}{354} a^{7} - \frac{1}{118} a^{6} + \frac{25}{177} a^{5} - \frac{5}{118} a^{4} + \frac{25}{354} a^{3} - \frac{5}{118} a^{2} + \frac{65}{177} a$, $\frac{1}{1416} a^{12} - \frac{121}{708} a^{8} - \frac{15}{118} a^{7} - \frac{41}{472} a^{6} - \frac{43}{118} a^{5} + \frac{587}{1416} a^{4} - \frac{33}{118} a^{3} - \frac{217}{472} a^{2} - \frac{17}{118} a - \frac{415}{1416}$, $\frac{1}{656586456} a^{13} + \frac{134503}{656586456} a^{12} - \frac{36410}{27357769} a^{11} - \frac{18454}{27357769} a^{10} - \frac{20852623}{328293228} a^{9} + \frac{65872307}{328293228} a^{8} + \frac{11717127}{218862152} a^{7} - \frac{52788159}{218862152} a^{6} - \frac{146264989}{656586456} a^{5} + \frac{124604417}{656586456} a^{4} - \frac{24914981}{218862152} a^{3} - \frac{2121895}{218862152} a^{2} - \frac{178360879}{656586456} a - \frac{326024617}{656586456}$, $\frac{1}{25606871784} a^{14} + \frac{7}{25606871784} a^{13} - \frac{363221}{1969759368} a^{12} + \frac{2887367}{6401717946} a^{11} - \frac{3162469}{12803435892} a^{10} + \frac{49379831}{1422603988} a^{9} - \frac{974031905}{25606871784} a^{8} + \frac{482490331}{25606871784} a^{7} - \frac{92162777}{12803435892} a^{6} + \frac{481922169}{2845207976} a^{5} - \frac{2483788787}{12803435892} a^{4} - \frac{5779462849}{25606871784} a^{3} - \frac{120492781}{6401717946} a^{2} + \frac{11437776391}{25606871784} a - \frac{12665018137}{25606871784}$, $\frac{1}{6134100528985416} a^{15} - \frac{31333}{6134100528985416} a^{14} - \frac{4497667}{6134100528985416} a^{13} + \frac{81797498428}{255587522041059} a^{12} + \frac{851565437719}{1022350088164236} a^{11} + \frac{2799237385793}{3067050264492708} a^{10} - \frac{46598950785401}{6134100528985416} a^{9} - \frac{1135171026603817}{6134100528985416} a^{8} - \frac{28864993777331}{511175044082118} a^{7} + \frac{1361523139165337}{6134100528985416} a^{6} + \frac{753254527699145}{1533525132246354} a^{5} + \frac{2535751928467123}{6134100528985416} a^{4} + \frac{379973940550355}{3067050264492708} a^{3} + \frac{807596554691869}{2044700176328472} a^{2} - \frac{228415942147709}{2044700176328472} a - \frac{268812288081659}{766762566123177}$
Class group and class number
$C_{10}\times C_{10}$, which has order $100$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76496.79137714463 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||