Normalized defining polynomial
\( x^{16} + 24 x^{14} + 264 x^{12} + 1218 x^{10} - 1666 x^{8} - 20064 x^{6} + 52041 x^{4} - 1878 x^{2} + 3481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9321955795676176000000000000=2^{16}\cdot 5^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(259,·)$, $\chi_{340}(69,·)$, $\chi_{340}(203,·)$, $\chi_{340}(13,·)$, $\chi_{340}(67,·)$, $\chi_{340}(217,·)$, $\chi_{340}(157,·)$, $\chi_{340}(293,·)$, $\chi_{340}(101,·)$, $\chi_{340}(103,·)$, $\chi_{340}(169,·)$, $\chi_{340}(191,·)$, $\chi_{340}(307,·)$, $\chi_{340}(251,·)$, $\chi_{340}(319,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{12} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{12} a$, $\frac{1}{228} a^{10} - \frac{3}{76} a^{8} + \frac{5}{38} a^{6} - \frac{31}{76} a^{4} + \frac{1}{57} a^{2} - \frac{3}{76}$, $\frac{1}{228} a^{11} - \frac{3}{76} a^{9} + \frac{5}{38} a^{7} - \frac{31}{76} a^{5} + \frac{1}{57} a^{3} - \frac{3}{76} a$, $\frac{1}{479484} a^{12} - \frac{11}{479484} a^{10} + \frac{4603}{239742} a^{8} - \frac{6401}{53276} a^{6} + \frac{2531}{12618} a^{4} + \frac{96085}{479484} a^{2} - \frac{39430}{119871}$, $\frac{1}{28289556} a^{13} - \frac{4217}{28289556} a^{11} - \frac{16427}{14144778} a^{9} + \frac{405787}{3143284} a^{7} - \frac{2874941}{7072389} a^{5} + \frac{5593327}{28289556} a^{3} - \frac{1008913}{7072389} a$, $\frac{1}{537501564} a^{14} + \frac{5}{29861198} a^{12} + \frac{664231}{537501564} a^{10} + \frac{620111}{268750782} a^{8} + \frac{187055473}{537501564} a^{6} + \frac{27953729}{59722396} a^{4} - \frac{65896831}{268750782} a^{2} + \frac{1678559}{9110196}$, $\frac{1}{537501564} a^{15} - \frac{5}{537501564} a^{13} + \frac{532423}{268750782} a^{11} + \frac{363446}{44791797} a^{9} - \frac{39973103}{134375391} a^{7} - \frac{268443551}{537501564} a^{5} - \frac{125658163}{537501564} a^{3} - \frac{18359881}{179167188} a$
Class group and class number
$C_{4}\times C_{40}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 229864.8182635129 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||